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A digitized color infrared aerial photograph, of the
Chesapeake Bay region, is classified using both stages of
the classification technique to demonstrate the potential
of reclassifying only certain spectral classes with ancil-
lary data. A statistical reclassification is done accord-
ing to texture as the Second Stage; a threshold range rec-
lassification is accomplished with a vegetation index

ratio; and a threshold level reclassification is performed

using a polygon-masked image.
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ABSTRACT

.‘A Semi-Supervised Two Stage Classification Technique has
been developed on the IBM PC-AT computer at the
Environmental Remote Sensing Center, University of
Wisconsin-Madison. This technique is used to classify

multispectral digital images. It involves two stages.

The first stage is a hybrid clustering technique and the
second is a reclassification (post-classification process)
of a spectrally classified image with digital ancillary

information.

In the first stage, the analyst directs the clustering
algorithm by delineating a certain number of training
areas so that an unsupervised clustering algorithm can
identify a user defined number of spectral clusters in
each area. These clusters are then implemented as seeds
to collect further spectral information from throughout ‘o¥
the entire image. Mismerging of spectral clusters to the

seeds is prevented by a user defined variance threshold

and a transformed divergence computation.
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ii
The resulting clusters, training sets, are implemented

into a statistical classifier to segment the scene

according to spectral information.

.In the second stage, ancillary data is employed as a
Second Stage of digital information to reclassify certain
spectrally classified land cover types to increase the
classification accuracy. Two types of reclassification
can be applied, a statistical method and threshold level
approach. The statistical reclassification uses Second
Stage statistical input, while the threshold level
approach implements a Second Stage image file that is

amenable to thresholding.

A SPOT satellite sub-scene over the Greater-Madison area
in Wisconsin is segmented utilizing the Semi-Supervised
clustering approach. The FINDSET algorithm is an unsuper-
vised clustering algorithm that is presently employed at
the Environmental Remote Sensing Center. A comparison
between the Semi-Supervised approach and the FINDSET

algorithm is assessed.
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) Chapter 1
.? Introduction
o
it
0‘g
o
iy The following thesis research studies the use of unsuper-

i vised clustering algorithms and the implementation of

h ancillary data in the automated classification process of
:& remotely sensed data. This study is a development and

)

o

)

:g evaluation of a Semi-Supervised Two Stage classification
)

N

A

B technique. This classifier combines the advantages of an

unsupervised classification with the direction (guidance)

o

ig attributed a supervised classification.

4

ﬁ§ In previous years, unsupervised clustering algorithms that
3& are not considered statistically rigorous have been found
m’ to contain biases toward certain aspects of remotely

s# sensed data. FINDSET is such an algorithm and is present-
is ly used at the Environmental Remote Sensing Center at the
ﬁ University of Wisconsin-Madison (see section 2.11). It is
, based on the SEARCH algorithm of the ELAS package (NASA,
:3 1981) (see section 2.10). A Semi-Supervised approach

3{ developed in this thesis research reshapes the traditional
;s algorithm structure of FINDSET to potentially reduce these

3 - - - DY Rl - - - - Cat . - Tt W~ et a . . T T L R X L R R ] - " -
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biases.

Currently ancillary data is indiscriminately used in
assisting the spectral classification of the entire image
of interest, thereby classifying all the land cover in an
image with spectral and ancillary data. From the results
of previous research, discussed in chapter three, it can
be concluded that ancillary data is more appropriate in
classifying only certain land cover types in an image. A
reclassification approach that implements ancillary data
in a discriminant manner, directing the reclassification
of only certain cover types, could be more useful to the

remote sensing community.

The thesis hypothesis is 1) that a Semi-Supervised Two
Stage Classification technique can be developed that would
reduce some of the biases possibly inherent in the FINDSET
algorithm and 2) that the application of ancillary data as
a Second Stage used in a discriminant manner will improve

the classification accuracy.
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i 3
a’t“
)
! This research involves two objectives
Byt
e
»
ﬁ 1) Develop and evaluate a clustering technique that
XX
iy
o could reduce some of the biases that may be found in
h; FINDSET. The clustering approach developed is termed
Qafi
ie Semi-Supervised. The Semi-Supervised method stratifies
t‘i:
B the FINDSET approach to clustering, and includes addi-
§; tional statistical metrics to assist in forming spectral
§
l"
g statistics for the land cover classes in the image.
e
U
;% 2) To implement a post-classification routine (after
",
1
ﬁ; the spectral classification) that would implement ancil-
)
o h
o lary data in a discriminant manner; reclassifying only
f“ certain land cover classes, spectrally classified, with
1
4: additional digital information.
"
;ﬂ These two processes are not necessarily sequential in
9 application. The Semi-Supervised approach does not have
- to implement a reclassification; and the post classifi-
W
Sz cation reclassification does not require a spectral clas-
a sification that results from the Semi-Supervised process.
d
¢ 4t
)
W
l',:
.
x‘.
e
”»
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The remaining chapters discuss background (literature re-
view), the developed algorithms and methodology of the
analysis. Chapter 2 explains the classification tech-
niques and processes of remotely sensed data. Chapter 3
discusses the application of ancillary data in the classi-
fication process. Chapter 4 details the Semi-Supervised
approach in clustering analysis and the Second Stage re-
classification post-classification approach. Chapter 5
details the methodology involved in analyzing the algo-
rithm and describes the study sites selected. In chapter
6 the results of the research are discussed. Following
the conclusions in chapter 7 is an appendix of source code

of the programs.
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Chapter II

Classification Procedures and Techniques
of Remotely Sensed Data

2.1 Introduction

The following is a discussion of the current techniques in
automated image classification procedures of remotely
sensed data. The following is not an exhaustive review of
the various classification approaches, but serves to
inform the reader of some of the methods available. Clus-
tering analysis is detailed in the latter part of this
chapter. Although the thesis research involves a c.uster-
ing analysis and a reclassification technique, a review of
basic classification processes is established as useful

background information for the reader.

2.2 General Discussion on Automated Classification

Remotely sensed data often involves multispectral infor-
mation in the form of a digital image. Remotely sensed
images capture the relative spectral reflectance for all

the earth resources within the area covered by the scene.

A multispectral image is comprised of multiple bands of
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data, each representing reflectance values for certain
ranges of the electromagnetic spectrum. For example, a
photographic false color composite is a typical multi-
spectral image composed of three bands of data; typically
the green band (.5 - .6 micrometers(pm)), the red band (.6
- .7 pm), and the near—-infrared band (.7 - .9 pm).
Different earth resources in an image can be described by
certain combinations of spectral reflection values from
the individual bands. Through automated classification
techniques with computers, all the earth resources in an
image can be classified into the appropriate land cover
class. Automated classification according to multi-
spectral information is called spectral pattern recog-
nition (Lillesand and Kiefer, 1987). This chapter details
some of the methods of spectral pattern recognition used

in research today.

A multispectral image is comprised of picture elements,
pixels, which are quantitative representations of the
spectral reflection of an area on the earth’s surface.
The size of the area depends on the resolution of the
sensor. Spectral reflection is a relative measurement of

the reflected energy from an earth resource at various
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wavelengths and is recorded as a digital value by the
sensor. An image pixel is a vector involving spectral

reflectance values from each spectral band, registered to

represent the same area on the ground. An image pixel is
a vector of n dimensions. N is defined as the number of
spectral bands available to comprise the image. An image

pixel can be called a pattern vector, or feature vector,
and is plotted in n - dimensional measurement space
(Figure 1). Measurement space, or vector space, is
described by the spectral bands of data, each band repre-
senting a different dimension in vector space. There are
two spectrél bands illustrated in figure 1. Throughout
the text two dimensional figures will be diagramgd, such
as figure 1, which contain two axis, each symbolically
represented by a band number. In this instance band 3
could represent the red band and band 4 the near-infrared

band.

Bach land cover category within a digital image can be
represented by a spectral class having certain spectral
characteristics. The spectral characteristics of each

class can be depicted by selecting samples representing
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vectors are the spectral signatures of the category, and e

as vectors can be plotted in measurement space. Patterns 1,

i
LA

of the same class tend to have similar spectral attributes

e

and cluster in vector space forming clouds of feature

vectors (Figure 1). A cluster or several clusters repre- N
sent each land cover type in an image. These clusters g:"
occupy certain areas in multidimensional space, segmenting mﬁ
measurement space into regions that represent the various 3:
land cover types. The intent of spectral classifiers is gﬁ
)

to segment the pixels, vectors, into the appropriate ﬁ:
regions of vector space, labelling it as a member of that !E
land cover class. ﬁi
“f

Before the image can be classified, the clusters of %E
feature vectors for each land cover type must first be 3.
identified, so that the spectral regions can be defined ?ﬁ
for each category. This is accomplished in the training :’
or learning phase by identifying sample patterns for each E;j
of the land cover types in an image. The sample patterns E;
can be acquired in a supervised or unsupervised manner. ;:
In the supervised process the computer is guided by the ;‘
Y

analyst to identify the spectral characteristics of each x,

land cover class. In the unsupervised approach, a o




computer algorithm identifies the different spectral
categories in the multispectral data, with little or no

input from the analyst.

The remaining sections of this chapter will detail some of
the standard procedures of automated image segmentation:
the supervised and unsupervised learning phases in classi-
fications; three image classification decision rules: the
box-filter, minimum distance to mean, and the maximum
likelihood rule; and also review some algorithm devel-

opments for unsupervised clustering classifications.

2.3 Supervised and Unsupervised Classifications

The statistical method is one of the standard approaches
in pattern classification. It is assumed that the cluster
distributions, for each class, in measurement space can be
described by statistical parameters: the mean vector, the
number of standard deviations from the mean, and the co-
variance matrix. The mean vector consists of mean values,
in each spectral band, that represent the average spectral
response for that land cover class in that band. The

means from all the spectral bands identify the centroid of
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the cluster in measurement space. The standard deviations
describe the variance of the data around the means in each
of the bands. And the covariance matrix describes the
dispersion of the pattern vectors around the centroid; it

thus details the shape of the cloud.

The multidimensional distribution of the cluster is
assumed to be modeled as a multivariate gaussian (normal)
distribution. Since the shape of the distribution is
assumed to be known, only the parameters of the distri-
bution need to be determined and stored to describe the
cluster. These parametric statistical assumptions are
implemented in classifications to segment vector space
into spectral class regionas. These parameters cam be

determined through supervised or unsupervised techniques.

The supervised approach requires that the analyst delin-
eates training areas for each land cover category, from
which the computer obtains training samples for the class.
From these feature vectors the distribution parameters are
computed to represent the spectral class statistically.

To train the computer, polygons are placed over areas of

the image, on the computer monitor, that were considered
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ideal training areas, representing the spectral identities

of the land cover. These sites are considered ideal
because of their spectrally homogeneous appearance; and
through field checks and verifications with other ancil-
lary information. Through this process the analyst is
able to describe the spectral characteristics of the

clusters that represent the different cover types.

The unsupervised approach segments measurement space into
uniquely defined spectral classes, by algorithms that
identify these clusters with little guidance from the
user. The clusters are then utilized to classify the
image. The user then determines the utility of each of
these clusters by studying the areas classified in the

image.

There are many approaches to unsupervised clustering.

Some methods identify the statistical parameters, for each

spectral class, to be implemented in a statistical classi-

fication program to segment the image. Statistical clas-
sification programs are guided by certain decision rules
to classify the image, discussed in the next section.

Other approaches simultaneously classify the image as the
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pattern vectors are aggregated into their clusters. These
techniques are discussed in further detail in future

sections of this chapter.

2.4 Classification Decision Rules

The basic decision rules employed to statistically segment
digital images in the world of remote sensing are the box-
filter (parallelepiped), minimum distance to mean
(Buclidean Distance) and the maximum likelihood classifi-
cation scheme. To facilitate clear explanations of the
following classification methods, only two dimensions of
the data will be depicted in the illustrations. Normally
all the spectral bands of the image are implemented in the

classification process.

These three decision rules require the statistical
parameters for each class as input from the analyst,
obtained during the learning process. These parameters
describe each of the representative land covers in the
image, detailing the clusters that occupy certain regions

in measurement space. Sequentially each pixel in the

image is plotted in vector space and compared to the
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) training clusters. Each pixel is categorized into the ‘|
class to which it is most similar according to the ',

following decision rules.

2.4.1 Minimum Distance to Mean Decision Rule y

' A minimum distance to mean decision rule (Lillesand and "

Kiefer, 1987; Nelson et al., 1981) bases the classi-

- e

fication of each feature vector on the Euclidean distance ¢

between the centroids of each cluster to the feature ]
vector. After the distance between the unknown feature ”
N vector and every training cluster’s centroid are
calculated, the unknown vector is classified into the

category to which it is closest. X

A disadvantage with this algorithm is that it is insen- X
3 gsitive to the different degrees of variance in the train-
ing data. The image pixel, labelled 2, in figure 2 is
classified as sand according to the minimum distance to
mean rule, even though the pixel should be classified as 2
v urban according to the variance of the data. This could
! be corrected by using a statistical distance metric in- K

stead of a Euclidean distance function. A statistic
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rule, (From Lillesand and
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distance function is a measurement that considers the

variance of the distributions when calculating the
distances between the centers of the clusters. Unfortu-
nately, many statistical separation measures, such as
Swain-Fu (Maktav,1985; Armstrong,1977), pairwise diver-
gence {(Pearson,1977), Jeffries-Matusita (Maktav,1985;
Swain and Davis,1978), and the normalized distance between
the mean (Swain and Davis,1978) are criteria to measure
the distance between two clusters, not the distance be-
tween a point and a cluster as would be required for a
minimum distance to mean rule. The Mahalanobis distance
(Duda and Haét,1973), however, appears to be a metric that
determines the statistical distance between a point and a

cluster:

r=(x - p)t I (x - p).

This distance measurement implicates the dispersion of the
cluster, by including the inverse of the covariance ma-
trix. The Mahalanobis distance measure is a complex cal-
culation and defeats one of the advantages of a minimum
distance to mean classifier, which is the speed and

simplicity of the computations.
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Box Classification Decision Rule

A box classification filter (Lillesand and Kiefer, 1987;
Story et al., 1984) bases the classification decision on
the ranges of the multispectral dispersion of the training
clusters in each of the spectral banda. The unclassified
feature vector must fall within the limits of the maximum
and minimum training values, in each spectral band, to be
a member of that spectral category. Unlike the minimum
distance to mean approach, the box filter is sensitive to
the variance of the data by considering the dispersion of
the spectral values in each band. The high and low values
in each band create a box around the center of the cluster
(Figure 3). The unclassified pixel must fall within this
box to be classified as a member of that class. The box
becomes a parallelepiped when more than two dimensions of
data are involved in describing the training set statis-
tics. Therefore, this classification scheme is also

titled the parallelepiped classifier.
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If the unknown pixel falls outside the limits it is

considered unclassified. This often results in a large
percentage of the image remaining unclassified. In Story
et al. (1984), a box—-filter classification resulted in
79.9% of the image remaining unclassified. There was,
however, a high degree of accuracy within the areas clas-
sified, 86.44%. This indicates that the box regions
describe the spectral characteristics of the spectral
classes particularly well but more training set data is
required to classify the remaining areas of the scene. A
box-classifier works well except for overlapping classes,
where two different regions overlap (Figure 3). Misclas-
sification often results when an unknown vector lies with-
in an overlapping region because the classifier assigns
the pixel into the first region it fits. Therefore, the
order in which the box filters are inspected biases the
results. The overlap is caused by sample distributions
that are similar in spectral characteristics and also
highly correlated. Distributions having a high covari-
ance, are poorly charactsrized by the parallelepiped
decision regions (Lillesand and Kiefer, 1987). Covariance

is the tendency of a pattern vector to vary similarly in

two or more spectral bands; thus, cluster distributions

w .

B S g T
/:'/:."-‘ s 1. > 5

"5
.’"

P

et e
. N ?' - tw

b
b

!

s
(I}
-
«

PR L

»



% a1 0 A" 2t a0 2% 08 % att el 4% 0e' Ay - 5,0 Gat g% e R t" Ly "8 ¢ 20 A 0e -8 Uat e Sahe et a b Al R

> - - .-

-k

20

T -

can appear elongated and often slanted. (the H’ vectors
X in figure 3). Positive correlation involves a dependence
] in the training data in which high digital values in one
band are associated with high digital values in another.

Negative correlation takes place when the inverse occurs,

- d

high values in one band tend to be associated with low

P
ry

values in the other. Negative correlation is illustrated

by the 'W’ class in figure 3.

-

o
}

D

Y Classification rules based on decision regions described

X by parallelepiped volumes are not sensitive to spectral

‘l

0 .

$ data that is highly correlated. Unfortunately, remotely

‘ sensed data often exhibits covariance. The parallelepiped

) is able to describe such a situation much better if the

L multidimensional rectangle was modified into a series of

3 stepped rectangles (Figure 4). Although this may allevi-

1 ate some of the problems, another type of decision rule

X may be more adept at describing spectral patterns of this

U

: nature. Such a rule is a maximum likelihood classifier.
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Maximum Likelihood Decision Rule

2.4.3

The maximum likelihood classification (Lillesand and
Kiefer,1987; Story et al., 1984) is based on statistical
parameters such as the mean vector and covariance matrix,
to estimate the training distributions for each land cover
class. This classifier can quantitatively evaluate both
the variance and covariance of the spectral data in vector
space because of the inclusion of the covariance matrix in

the decision rule.

The distribution of the pattern vectors in the training
clusters, for each class are assumed to be gaussian in
shape (smooth curve normal distribution). With this as-
sumption, the mean vector and covariance matrix can ade-
quately describe the cluster, as was previously explained
in section 2.2. With these parameters, decision regions,
for each class, are quantitatively described by a discrim-
inant function. Discriminant functions, unlike the paral-
lelepiped are probability demnsity functions that are very
good statistical approximations of the shape of the sample

distribution in multidimensional space.
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With the probability density function of any cover class,
we may compute the statistical probability of an unknown
feature vector, plotted in measurement space, of being a
member of that spectral category. In figure 5 the dis-
criminant functions for a few land cover types are illu-
strated in two dimensional measurement space by a 3
dimensional surface. The vertical axis indicates the
probability of a pixel being a member of a class. The
closer the feature vector plots to the center of the
distribution, the more probable that it is member of that
class. To classify an unknown pixel according to the
maximum likelihood rule, the algorithm calculates the
probability of that pixel being in all of the land cover
classes represented by training statistics. The feature
vector would then be assigned to the most probable class,
the one with highest probability. This procedure classi-
fies all the pixels in an image, unless a threshold is
established for the minimum probability that must be
satisfied before a feature vector is classified (for

further information on thresholds see section 2.4.4).

Each discriminant function defines lines of equal proba-

bility around the cluster center. 1In multidimensional
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Probabdity

Figure 5, Spectral class discriminant functions.
(From Lillesand and Kiefer, 1987.)
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space these ellipsoidal contours are hypersurfaces (hyper-
ellipsoids) that are located at equal statistical dis-
tances around the center. A two dimensional diagram illu-
strates these ’equiprobability contours’ (Lillesand and
Kiefer, 1987) (Figure 6). These contours demonstrate the
sensitivity of the maximum likelihood approach in repre-—
senting correlated data as compared to the rectangular

regions depicted by the box-filter.

2.4.4 Maximum Likelihood Clasaifier — Quantitative

The following section details the multivariate statistical
analysis of the maximum likelihood method in a more quan-
titative sense, according to Swain and Davis (1978). 1Its
intent is to inform the reader of the computational anal-
ysis that is involved in the classification of a given

Pixel in an image.

Discriminant functions are probability density functions
for each land cover class, that are employed in a maximum
likelihood decision rule to classify an image. If
functions g:(X), j =1, 2, .. m, are a set of m discrim-

inant functions, one for each decision region, then the
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following decision rule applies:

Classification rule: Let wi denote the ith class. Decide
that X € wit if and only if gi(X) 2 g3(X) for all j =1,
CSwain,1977) .

It reads: X belongs to class i only if the probability of
X being in i, estimated by the discriminant function, is

greater than the probability of it being in one of the

other classes.

In a univariate case discriminant functions for class i

are given by:

where exp(] e raised to the power indicated.

pi is the mean value of measurements in class
i.
0i2 = 1is the variance of the measurements in
class 1.

pi and o0i2 are the parameters to be stored that will

define the cluster for each class. Unbiased estimators
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o, = m=—mre X (xj— ui)z

(Fruend, 1971)
where qi is the number of samples in class 1i.
x; is the jth sample.

Therefore, the estimated probability function for class i
is then;

———————— — —— ——— o —— ————

The univariate (one dimensional) case can be expanded into
a multivariate probability density functionm. But before
this is demonstrated, bivariate terms should be discussed

to indicate some of the multidimensional terminology.

The two dimensional bivariate normal density function is

given by a cumbersome equation (Swain and Davis, 1978), in
which the parameters pij and o0i3x are calculated for each
set of two dimensional training set statistics to describe

the distribution.

is the mean value of the data in channel j,
for class 1i.
is the covariance between channels j and k,
for class i.

where piy

Tijk
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The two dimensional case can be expanded into n-dimensions
and simplified in expression by vector/matrix notation. N

is equal to the number of spectral bands.

Xn
represents the data vector. Each x represents a

registered digital value from each spectral band.

m

Hi2

Pin
L

represents the mean measurement vector for class i. Each
p represents the mean value for the dispersion of values

in each band for class i.
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represents the covariance matrix for class i. The
diagonal elements define the variance of the samples in
each band, while each off diagonal element details the
covariance between two of the spectral bands for class i;
together they describe the shape of the cloud in

multispectral measurement space.

The multivariate density function is:

T -1
p(Xlw,) = -—=——c-——r—o exp[- 1/2 (X-U, ) Z,° (X - U,)]
i i i i
where [Z;| is the determinant of the covariance matrix Zi
, Zi~1 is the inverse of £ , and (X-Ui)T is the

transpose of the vector (X-Ui).

Uiy and i are calculated by unbiased estimators.
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1 Pij q. Z i1 J " ;
) 1 1=1 K
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T et e e - - 19
' %ijk a.-1 R LT P LA TR
i ,
. 1=1 :
' st
K J=1, 2,..n "
' k=1, 2,..n )
A
- ;
! where qi is the number of training samples in class 1i.
. ¥
, Now that the multivariate probability density function has <
‘ '
1 been detailed, one term in the maximum likelihood decision :
rule is left to be discussed, the a priori probability. 1
The a priori probability "is the anticipated likelihood of . ”
o
occurrence"” for a certain class within the scene N
' (Lillesand and Kiefer, 1987); regarding some factor, such 4
t W,
: as the percentage of area that is covered by each class, ”
B Y
' for example. The a priori probability is a weighting q
b factor that permits land cover rarely evident in the image ]
: %
to be weighted less during the classification process than ;
5 a cover type which is more prevalent.
\ o,
] g
b The maximum likelihood decision rule: Decide X € wi if :
3 and only if p(XJwi)p(wi) > p(X|wi)p(wi) for all j = 1, A
y 2, .. m. -~

(Swain, 1978)

X where p(wi) is the a priori probability for class i. The
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discriminant function p(X|wi)p(wi) also incorporates a
strategy to minimize the average loss over the entire set
of classifications (The Bayes optimal strategy) (Swain and

Davis, 1978).

The discriminant function that is expressed as a
multivariate density function, with the a priori

probability, now becomes:

plw,) T -1
p(x|ui)p(ui) = gi(x) = -mnepTTT l/zexp[—l/z (X-Ui) z, (X-Ui) }.
(2n) tz, !

A transformation of this equation into a simpler form is
gs(X) = loge p(wi) - loge |Zi| - 1/2 (X-U; )T Zj-1 (X-Ui).

Only the quadratic term must be recalculated for each

class with every classification.

One difficulty is that this decision rule classifies all

objects in an image. In remote sensing some spectral
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patterns do not belong to any of the classes described,
because of an analyst oversight in creating training sets
or because of insignificant training data. The classifier
can be designed to reject a low probability of classi-
fication by a technique called thresholding. A user
specifies a threshold that will guide the classifier in

rejecting probabilities below the designated value.

This maximum likelihood decision rule is widely used in
remote sensing applications. It can be used to classify
an image according to discriminant functions derived from
supervised training set statistics or training sets

created by an unsupervised clustering technique.

2.4.5 Box Preprocessing Decision Rule

Of all the classification approaches we have discussed
above, the box classifier was the most accurate in seg-
menting the image, often not classifying more than 50% of
the image. The maximum likelihood approach, however,
classifies all the pixels in an image, with reduced
accuracy, if no threshold value is stipulated. Maximum

likelihood approaches implemented without a threshold
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value have the ability to misclassify areas that have not
been spectrally described with training set data. In
Story et al., (1984) a parallelepiped Bayesian classifier
was found to be the most accurate in classifying the whole
image when compared to the previous approaches mentioned.
In this study the box-filter was found to be 86.44%
accurate in the areas that were classified, the maximum
likelihood approach (bayesian) was 79.03% accurate in
classifying the whole image. The parallelepiped-box
classifier was 83.64% accurate in classifying all the

pixels in the image.

The parallelepiped-box classifier (Story et al., 1984)
performs a box-preprocessing operation on the data, and
those pixels that either fall outside the parallelepiped
regions or in areas where the boxes overlap are labelled
‘undefined’ and 'mixed’ respectively. The box prepro-
cessor allows the analyst to specify a confidence interval
to adjust the ranges of spectral values to be used as
limits within each band of data. The confidence interval
involves the designation of a certain number of standard
deviations from the mean. The user then has the option of

reclassifying all of the 'undefined’ or ‘mixed’ categories
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of pixels using a maximum likelihood classifier.

The box-preprocessing classification program available at
ERSC performs a maximum likelihood operation on pixels
considered ’'mixed’ and permits the user to designate how
the 'undefined® pixels should be treated. All the classi-
fications discussed in chapters 5 and 6, unless otherwise
stated, are segmented using this program and all

’undefined’ pixels are labeled unclassified.

2.5 Unsupervised Clustering Methods

Unsupervised classification involves computer algorithms
which automatically analyze the spectral data and identify
the various classes that are present. In the supervised
process, clustered spectral data, representing information
classes, were identified by the analyst in a supervised
training selection process. Unsupervised clustering algo-
rithms inspect all the spectral data of the entire image
and aggregate similar feature vectors together to describe
the land cover categories of an image. The meaning of the
clusters is determined by the analyst after the image is

classified.
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Duda and Hart (1973) offered some basic reasons for using
unsupervised classification algorithms: 1) the collection
and labelling of large sets of sample data, from the
image, in the supervised training process can be surpris-
ingly costly and time consuming and 2) in the early stages
of the investigation it may be valuable to gain some in-
sights into the number and type of land cover categories
present, to assist in selecting sites for training the

computer.

There are numerous clustering schemes that have been
developed to identify separable spectral classes in
remotely sensed data. The research discussed in the
following sections is not intended to be an exhaustive
review of all algorithm developments, but it is a semi-

comprehensive outline of clustering methods.

Clustering is a method of aggregating spectral information
to represent the various information classes present in
the data. A common feature of all spectral data, is that
samples belonging to the same resource exhibit some simi-

larity among themselves and a dissimilarity with those
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patterns belonging to another resource. For example, if
all the pixels of an image were plotted in vector space,
there would be numerous clusters of feature vectors pre-
sent. These clusters are the aggregation of similar fea-
ture vectors and may represent useful information classes.
Unsupervised clustering algorithms seek out and define
these clouds of data. This concept is the basic premise
behind the unsupervised separation of digital information

into its different classes.

There are basically two broad categories of clustering
techniques. One is based on the hierarchical (heuristic)
approach and the other is based on criterion functions.
The hierarchical approach is a method whereby sets of
rules (intuitions) guide the clustering, whereas in the
other approach, a criterion function is identified and
optimized in each iteration of the algorithm to cluster
the data. The hierarchical method can be divided up into
two primary groups, the agglomerative approach and the
divisive approach. 1In clustering according to criterion
functions, there are numerous functions developed and
optimized for clustering. The following sections will

discuss many found in the literature review.
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2.6 Similarity Measures
A cluster is described by an aggregation of feature
vectors that are spectrally similar. To cluster data it

would seem obvious that a similarity metric must be iden-
tified. In multidimensional measurement space a good mea-
surement of similarity (or dissimilarity) between two
samples could be the distance between the two vectors. If
this assumption is true, then the distance between sample
vectors of the same resource would be less than the dis-
tance between pattern vectors that are not of the same
resource. Maktav (1985) implements an unsupervised clas-
sification algorithm with a Buclidean distance criterion.
Euclidean distance is a point to point distance metric and
is utilized to measure the distance between two n -
dimensional pixels, image vectors, y and z.

B= () (v, -z)%) M2

Euclidean distance is the combined sum of the distance
between the points in the individual bands. Maktav’'s
algorithm is based on grouping pixels into the appropriate

clusters based on the Euclidean distance between them, as
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a measure of similarity. Maktav does not make it clear
where the estimates for the initial means come from to

begin the clustering process.
2.7 Criterion Functions

A few of the criterion functions that Duda and Hart (1973)
discusses are the sum of squared error criteria, related

minimum variance criteria and the scatter criteria.

The most widely used criterion function is the sum of the
squared error (variance) criterion. It is defined by the

equation

c
Jc = Z Z I x - =, ||2.

i=l1 xeX
For cluster Xi the mean vector mi is the best represen-
tation of the samples in the distribution in the sense
that it minimizes the sum of the squared lengths of the
'error’ vector x — mi (Duda and Hart,1978). The value Jc
depends on the variance of the samples; how close they are
aggregated. ‘¢’ is the number of clusters that are iden-

tified. The optimal partitioning minimizes Jc, the total

squared error incurred by representing n samples x:
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k Xn, by ¢ cluster centers mi ... mec. Clustering of this
r type is called minimum variance partitioning.
%
y
»
l
? The related minimum variance criterion eliminates the need
§ for mean vector values found in the calculation of the
i}
? minimum variance partitioning.
K
M
c
X J = 1/2
5 c / ,Z ni s1
s i=1
Y where
1 2
A Lollx - %
\ n, xeX, x’e X°
\ i i i
: This criterion involves Euclidean distances between
samples in the individual clusters as a measure of simi-
N larity; Jc is extremized (minimized) when the distance
between the samples in the distribution are minimized.
g
) The scattering criteria are a class of criterion functions
) based on the scatter matrices used in multiple discrim-
inant analysis: scatter matrices. trace criterion, and
(!
3 determinant criterion.
)
I

: ]

The scatter matrices are equations representing the

LJ

within-cluster scatter and the between-cluster scatter.
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The within- and between—cluster scatter depend on the
partitioning that takes place; minimizing the within

scatter will tend to maximize the between cluster scatter.

The other two criteria that involve the scatter matrix of
the distribution, deal with the size of the cluster. The
trace and the determinant criterion entail minimizing the
scalar measurement of the size of the scatter, having an

implication on the variance of the distributions.

2.8 Iterative Optimization in Clustering

For optimal partitioning of the data into unique spectral
classes the above criterion functions must be extremized.
One approach to optimal partitioning is iterative optimi-
zation (Duda and Hart,1973). The process involves sepa-
rating the data into initial partitions, and moving
samples from one partition to another in order to optimize
the values of the criterion function describing the clus-
ters. This process has been related to ‘hill climbing’ in
general, different starting points (initial partitions)

can lead to different solutions (Duda and Hart,1973).
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In the literature, many clustering techniques involve mul-
tiple iterations, such as in Armstrong (1977). The algo-
rithm takes some initial guesses as to where the initial
cluster centers are located and pattern vectors from the
image are then merged to the nearest cluster. After each
iteration the means are recalculated according to the new
distributions. The process is repeated until a stable
assignment of pixels is achieved, which is attained when
the mean values between two consecutive iterations fall
within a tolerance determined by the user. There is no
guarantee that the clusters would not overlap in mea-
surement space. So a distance measurement was devised to

examine the separability of the derived clusters.

Dij is the statistical distance between the clusters i and

? ]

J. x' and '

' are the means and standard deviations for

c
these clusters, respectively, and 'k’ indicates the dif-
ferent spectral bands of the image. ISODATA (Story et
al., 1984), ISOCLS (Werth, 1981) and CLUSTER (Colwell,

1984 )are acronyms for clustering algorithms that take on

the same basic approaches as that discussed above by
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Armstrong; clusters grow around seedpoints (initial clus-
ter centers) by aggregating pattern vectors to the nearest
cluster. This style of clustering has also been called
the ‘K means’® method (Gowda, 1984; Lillesand and Kiefer,

1987).

The Coalescence Clustering Algorithm (Ince, 1981) is
different from previously mentioned techniques in that
data points are clustered based on the attractive force
between them. The clustering takes place in feature
space, that is the algorithm operates on a multidimen-—
sional histogram array of all the image pixels for seg-
menting the data points into spectral classes. The
attractive force is a gravitational one with a range
limitation on attraction of *r cells in each dimension.

L} 3

r’ is a parameter that the user must specify, and
identifies the range of the neighborhood to be considered

for the force calculations.

n
D s i S

hi is the frequency, number of occurrence, for that cell,

or pattern vector i. Six is the Euclidean distance be-
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f tween cells i and k. F is the net force on cell i due to
v all the cells in its neighborhood. K is the total number

o of data points in the neighborhood of cell hi.

Fi / hi

ai

ai is the acceleration on cell i due to all the cells in
the neighborhood. If the acceleration is greater than a
designated threshold value then the mass (frequency) in
that cell moves into the neighboring cell in the direction
' of the acceleration, emptying the original cell. At each
! iteration the histogram array is modified and the merging
. process ceases when all non-empty cells are beyond the

neighborhood r of each other.

Another different clustering technique involves a con-—
vexity testing method (Vasseur and Postaire,1980). The
convexity testing method is a mode (peak) detection pro-
cedure, since it assumes that in a multimodal probability
density function (such as in a multidimensional histogram

of all the digital data in the image) each mode corre-

AN

sponds to one clustzr. Modes can be characterized by the

convexity of the underlying probability density function.
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Mode seeking procedures identify convex areas of samples
which are considered to be the nuclei of the individual

classes, of which the remaining data are merged.

Similar clustering schemes using multi-dimensional histo-
grams have been researched by Goldberg and Shlien (1977),

Wharton (1983) and Leboucher et al. (1976).

In Goldberg and Shlien (1977) a 4 dimensional histogram (4
spectral bamnds) is used in clustering the data. It is a
table listing the frequencies of the pattern vectors of
the image. Peaks in the histogram (vectors with a high
frequency of occurrence) are assumed to be associated with
different resources. The method involves isolating these

peaks and merging the associated vectors to create uni-

modal clusters. A threshold is chosen to divide the ;
intensity vectors of the image into two sets, those that %
)
occur with at least this threshold frequency, and those g'
that occur with less. The former group is separated into E;
clusters corresponding to the peaks. The latter group of 5,
vectors are assigned to the closest peak. EE
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' The peaks are delineated by grouping those pixels, of the ,
first group, that occur at a frequency equal to or greater 1
than the threshold according to their connectedness. Pat- P
\ tern vectors are said to be connected if the intensity in
each of the bands do not differ from one another by more

than one. After the peaks are identified, the remaining

L ¥ NV

e

pixels in the second group are assigned to a cluster

1 according to the ‘connected to a cluster’ rule. Any

.
e jo Tt Bid

A vector remaining unclassified is then merged with a

8 cluster by a Euclidean minimum distance rule.

Lot

Wharton (1983) follows four steps in his approach in

R

identifying the peaks in the multi-dimensional histogram.

-

First, the algorithm computes a list of neighboring

e
;.‘

vectors in the histogram. Second, after examining the

L

list of neighbors a directed link or pointer connects each

ow

- vector and its immediate neighbor having the maximum

positive density gradient. The gradient is calculated by o

the difference in the two vectors divided by the distance

between the two vectors. The distance measure is the city 5
~
_ block measure >
k i3
: Dist (x,y) = Z | X, Ty, | . "
D i=1 -,
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k is equal to the number of spectral bands. In the third
Al
step, the cluster centroids are identified by locating the "y
2\
peaks in the histogram. A peak i3 defined to be a vector X
P
whose frequency count is greater than the frequency count
b.‘,
of all its neighbors. A peak will form a nucleus of which \j
{yrwd
other vectors can be grouped. In the fourth step, the )
()
directed links, discussed before, are used to merge the %{
remaining non-peak vectors to the appropriate cluster. :
ot
R

The directed links in theory should form a path leading to

the centroid of the cluster. Because these paths are

JW
¥

directed toward higher density (frequency) neighbors,

adjacent clusters should be separated by low density

P A N )
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Y

valleys. All vectors in the paths should be assigned to

. . . « . . -‘,‘. 3
the proper cluster thus delineating unimodal distributions -~
a
from the histogram. 0
-~
»
N
o
2.9 Hierarchical Approach ?:
o
As was stated before, the hierarchical approach to clus- L-
o~
tering can be divided into two groups: the agglomerative ::
l--: y
and divisive methods. In the agglomerative method, each $\'
“»
(-
pattern vector is considered a cluster center and based on b
o
w
certain rules they are interactively merged together to 3\
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form larger clusters. Whereas, the divisive method starts
with a single cluster, a (multi-dimensional) distribution
of all the data in the image, and splits it into smaller
more meaningful clusters. The computation involved in the
agglomerative procedure is usually simpler; however, if
there are many pattern vectors and the analyst is only

interested in separating a few clusters, the divisive

method would be more efficient (Duda and Hart,1973).

\~
Y
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\ ¥
2.9.1 Agglomerative Method g’
)
o
The multiple iteration clustering algorithms mentioned ﬁ!
kY
above by Armstrong (1977) and others, such as ISODATA, Q
ISOCLS, and CLUSTER, can all be considered agglomerative s
t
r o
techniques. These clustering methods start out with ;:
r
W
initial estimations for the cluster centers and group :\‘
samples to these clusters according to similarity based on !:
a distance measurement. Two more examples of agglomer- Ef
ative methods are the nearest neighbor and the furthest Ef
neighbor algorithms (Duda and Hart, 1973). The theories ,\'
N
of these two techniques are explained in the following -fﬁ
paragraphs. N
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The nearest neighbor algorithm connects the nearest
neighbor data points according to a minimum distance
measurement function. Since only distinct clusters and
vectors are linked, the resulting clusters are never
closed loops but grow in an open-ended fashion, as a tree.
Because the algorithm uses a minimum distance metric it
generates what is termed a ‘minimum spanning tree’ (Duda
and Hart,1973). Sometimes a few points are positioned
such that their presence causes two clusters to be linked
forming an elongated cluster, a ’chaining effect’ (Duda
and Hart, 1973). This can be advantageous if the clusters

are elongated.

In the furthest neighbor algorithm a maximum distance
function is used between points and the growth of
elongated clusters is often discouraged. This method
creates clusters with all the samples connected, unlike
the nearest neighbor algorithm that produces chains. The
furthest neighbor approach increases the diameter of a
cluster as little as possible with each clustering itera-
tion. A diameter is defined as the largest distance be-
tween points in the cluster. "True clusters are compact

and roughly equal in size" (Duda and Hart,1973).
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Processes involving distance functions based on the two
extremes, maximum and minimum, often tend to be sensitive
to "mavericks", "sports", "outliers" or "wildshots" (Duda
and Hart,1973). The average and mean distance functions
discussed in Duda and Hart (1973) are natural compromises
to this problem, in which the structure of the mean

function permits it to be the simplest to compute.

Besides an iteration technique explained above, Armstrong
(1977) also describes a ‘chain algorithm’ which implements
a nearest neighbor agglomerative method. Sampleé are
joined to clusters based on a distance measure for simi-
larity. The distance between the points must meet an
analyst-defined threshold velue before it can be

considered a cluster.

2.9.2 Divisive Method

An example of a divisive approach is presented by
Chandrasekhar (1983), in which a single cluster is

continuously split with successive iterations. The

furthest two points used in the measurement of the
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diameter of the initial cluster are chosen as cluster
centers. Pattern vectors are then assigned to these two
centers according to similarity measures. The cluster
with the largest diameter is then split by the same
procedure mentioned above. This process is repeated until
the desired number of clusters is obtained. Euclidean

distance was implemented to measure similarity.

2.10 SEARCH Algorithm

Most of the unsupervised clustering processes above
simultaneously classify the digital images during the
clustering operation. Very few methods, such as the
SEARCH algorithm presented by Pearson (1977), cluster the
data yielding statistical parameters describing the
spectral classes. These parameters as described before,
represent training information that can be implemented
into a statistical classifier (such as maximum likelihood)

to segment the digital image.

The SEARCH algorithm’s approach to clustering is similar
in nature to the agglomerative heuristic processes, but

instead of merging individual vectors to cluster, a group
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of similar pixels is aggregated to a cluster center.
Windows, 6 pixels by 6 pixels in dimension, are sequen-
tially analyzed in the image as possible training samples
(Figure 7a). Windows that appear to be homogeneous are
stored as training samples, or signatures. Once the first
50 signatures are found the 2 clusters with the smallest
pairwise divergence are merged reducing the total number
by one. The next signature identified (Figure 7b) 1is
considered the 50th cluster and again the 2 most similar
clusters are merged according to a pairwise divergence
metric. This process continues until all the 6 x 6 win-
dows in the image are analyzed. The resulting clusters
are merged down to the analyst-defined number of clusters
by a pairwise divergence calculation. The pixels in a
window are considered to be homogeneous by meeting the
user designated limits on lower and upper bounds of the
standard deviation for each spectral channel. The lower
bound limit avoids extremely peaked clusters that may have
high divergence when merged with another cluster. And the

upper bound insures a homogeneous cluster.
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\ 2.11 FINDSRET Algorithm

i a
e - .,

’ _ j
! The FINDSET algorithm is the unsupervised clustering algo- i}
rithm presently used at the Environmental Remote Sensing ;
Center (ERSC) at the University of Wisconsin - Madision. (
It is based on the SEARCH algorithm detailed in the :
previous section. FINDSET identifies a maximum of 50 3‘
1 training sets, or clusters, in an image. The algorithm :
looks at 3 x 3 windows in the image to identify homogenous ﬂ
-
spectral clusters with a user defined variance threshold. 3
The variance threshold places an upper bound on the g
maximum sum of the variance of the spectral bands of the by,
data. If the sum of the variance exceeds this, it is not _;
considered homogeneous. The clusters are merged by the -
E following statistical distance metric é:

r.

-y
»

) k (x. - x )2 1/2 b
4 a= 3 o2l y
y 1 2 2 ~
= + i

n 01 02 ;

¥~
i The n is the number of spectral bands. Symbols ’x’ and ;“
I q
] ‘0’ are the means and standard deviations of the indicated :
clusters. This measure is similar to other statistical :

W

similarity measures that have been discussed previously.
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Possible Problems with FINDSET

Within the last few years the researchers at ERSC have
recognized some possible problems with the FINDSET

algorithm.

One is the potential inability to gather spectral statis-
tics for all the land cover classes contained within an
image, creating a bias with respect to the section of the
image in which the initial 50 clusters are found. The 3 x
3 window begins searching for clusters in the upper left
corner of the image. If the first 50 clusters are found
in the upper portion of the image and this section
contains one dominant land cover type, such as forest or
water, then many of the training sets resulting could be
dominated by the statistics from this cover type. This
bias may prevent the creation of training sets for other
land cover classes in an image, such as built-up areas or
water, that may be located elsewhere within the image. It
is also reasonable to assume that homogeneous clusters
describing other laéd cover classes could be mixed with
the forest training clusters, for this example, by the

minimum distance calculation, contaminating the statis-
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tics. In short, there could be a bias towards the first

50 clusters identified and a possible creation of mixed

training sets.

The above discussion about clustering bias involves the
analogy stated in Duda and Hart (1973) about "hill
climbing"” (see section 2.8). Different starting points
(initial partitions of the data) can lead to different
solutions. "If an unfortunate sequence of samples is
encountered, the error in classifying the unlabeled
samples can drive the classification the wrong way" (Duda

and Hart,1978).

Another problem associated with "hillclimbing"”, discussed
above, is that an arbitrary scheme like this could result
in the initial cluster centers being outside the clouds of
the data points that represent the real sample
(Armstrong,1977). This could result in mismerging, a
contamination of the clusters with resocurces that have
similar spectral characteristics. Story et al. (1984)
found that mismerging between water and shaded forest is a
possible scenario as a result of the misidentification of

the initial cluster centers and subsequent mismerging of
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spectral data.

Another difficulty involves the resolution of the remotely
sensed data classified. Resources that are less than 3
pixels in size, length or width, may be inadequately
trained on by the clustering algorithm and representative
training statistic never acquired. Spectrally homogenous
3 x 3 windows are delineated and analyzed as training
information. If an earth resource is digitally repre-
sented by less than 3 pixels, it would not fill a 3 x 3
window and a good training sample may never be acquired.
This could happen to roads, that are linear features,
comprised of 1 or 2 pixels, in satellite images when the
resolution of the data is 30 meters, for example. However
if a color infrared aerial photograph was digitized at a
spot size that would allow roads to be represented by ¢4 or
more pixels, adequate training samples could be acquired
in the FINDSET approach. This problem was also described
in literature by Story et al. (1984) when he discussed a

similar algorithm.

The issue of statistical independence between adjacent 3 x

3 windows, also referred to as autocorrelation between
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adjacent windows (Ahearn and Lillesand, 1986) is another O

discrepancy that may be present in the FINDSET algorithm. 4

Ahearn demonstrated that autocorrelation is more prominent

between sample windows touching at the sides rather than @

those touching at the corners. The FINDSET algorithm R
3
possibly reduces the validity of the statistical calcula- ‘3
%
tions by comparing adjacent windows that may not be inde- .x

L

pendent samples. E

E
. »J
, Another difficulty that can be attributed to many unsuper- ﬁ‘
i
vised clustering algorithms pertains to the requirement of Q‘

an a priori estimate of the number of clusters that should 2
. -y
| be found in the image. Unsupervised processes may require e,
several attempts to request the appropriate number of E

!\.

classes that produce an informative classification ¥
(Armstrong,1977). N
L

: N
b Q:
{ 2.12 Choosing a Classification Algorithm Y
~

>
3

An appropriate concluding section on the literature review }3

RS
of classification techniques might be a discussion on the g'

-

h Y

advantages and disadvantages of a classification algorithm r
that should be known before the analyst chooses one for a ;?
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specific application. There are 4 points of concern that
were outlined by Story et al. (1984): 1) the accuracy
that can be attained with a given technique, 2) the ‘ease
of use’, in other words, how "user friendly" is the system
3) the amount of input information that the analyst must
supply, such as training set statistics or a variance
threshold and 4) the ‘CPU’ time, or the time it takes to

run the program on the digital image of interest.

2.13 Post-classification of Remotely Sensed Data

In the literature, post-classification processes seemed to
involve two applications: 1) the reassessment of classi-
fied images for monitoring change detection and 2) post-
classification spatial smoothing algorithms. Neither
approach is similar to the automated reclassification
according to ancillary data as developed in the Second
Stage reclassification approach discussed in section 4.6.
Nor did any of the research involving post-classification

operations, in the literature, involve a similar process.

In monitoring change detection, post-classification

involved multitemporal analysis (Goldberg et al.,1982;
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Weismiller et al., 1977; Wickware and Howarth,1981).
Digital images from two different dates were independently
classified using automated techniques to segment the
identical number of classes. In a post-classification
approach the two classified images were compared and the
changes recorded. Most of the time the classes monitored
were visually analyzed pixel by pixel, but other times an
automated comparator was implemented. The comparator was
a processing program that compared the two classified
images producing resulting images that indicated the areas
of change. Also contingency tables identified the changes

that occurred and the nature of the changes in the output.

Post-classification spatial filtering has been implemented
to smooth classified images, thereby possibly increasing
the classification accuracy (Moreira et al., 1986). In
some areas land cover classifications resulted in the mis-
classification of some pixels in what should be homoge-
neously classified regions. A spatial filtering operation
reclassified many of these anomalously labelled pixels,
reducing the overall misclassification. In spatial fil-
tering operations, windows of the data are accessed in

various sizes and numerical calculations are applied. For
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classified images a majority filter is often used. This
type of algorithm considers all the classified pixels in
the window and determines which label has the highest
frequency of occurrence and assigns that value to the
center element of the window. This operation continues
throughout the image until the whole image is processed.
Spatial filtering implemented by Moreira et al. (19886)
computed a threshold for each window that required the
majority label in the window to meet a required frequency
threshold before the central pixel was changed. Spatial
filtering, in general, deemphasizes the high frequency
components of the classified image, often referred to as a
‘salt and pepper appearance’ or noise (Lillesand and
Kiefer, 1987). Low frequencies are deemphasized yielding

an image that is smoothed in nature.

2.14 Hybrid Classifiers

The Semi-Supervised clustering analysis can be considered
a hybrid approach to segmenting multispectral data. In
the literature hybrid clustering and classification algo-

rithms have been employed in numerous research projects.
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i Hybrid classifiers are classification techniques that

n involve both supervised and unsupervised analysis or any

- combination of different classification methods. Moreira
et al. (1986) used unsupervised spectral classification
technique with a post-classification spatial filtering

. process to increase the accuracy of wheat area estimates.

[ In Story et al. (1984) the ISODATA algorithm requires the
analyst to identify the initial cluster centers, in a
supervised fashion, before it groups the remaining data to

similar spectral classes in an unsupervised manner.

N Swain and Davis (1978) summarizes a hybrid procedure for
analyzing remotely sensed data. The process begins by

using an unsupervised classifier to enhance the raw data

P

by deriving some useful classes. The results of this
classification assist in a supervised training of the
area. After a supervised acquisition a cluster separa-

bility analysis is implemented to derive unimodal training

|y set distributions. The statistical training information
L)

N is then implemented into a maximum likelihood classifier
- te segment the digital image.
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The first stage of the Semi-Supervised Two Stage classifi- "'.
cation technique involves a clustering algorithm, whereas ﬁ
v

the second stage involves the application of ancillary :
data in a post-classification reclassification routine to -
increase the accuracy of the spectral classification. b
]

Ancillary information has been implemented in image seg- :ﬁ
’]

3

mentation with various degrees of success. 7]
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Chapter III

Ancillary Data in the Classification Process

3.1 Introduction

This chapter discusses the application of ancillary
information in the automated classification process.
Ancillary data can be defined as additional information
that is accessed to assist in making or justifying a
quantitative decision or amalysis. Ancillary data that is
implemented into the classification process is any digit-
ally amenable data that can be helpful in describing the
land cover classes of an image. There are many different
types of digital ancillary data. For example, texture,
digital topographical information (DEM), ratioed images,
vegetation index ratios, digitized map overlays, digitized
soil maps, and geographical information data bases, just
to name a few. This chapter will detail the application
of texture in the classification process, to support the
reasoning for the author’s reclassification approach

discussed in the next chapter.
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3.2 Texture

L -,

Texture is a descriptive attribute that is numerically

quantified for applications in digital image processing.

Texture is an innate property of all objects that are
around us. Visually, every surface has an arrangement of
tonal values. The texture of surfaces can be qualita-
tively described as rippled, mottled, irregular, limited,
striated, etched or any of a myriad of other terms.
Essentially, the textural properties of objects are not
independent of the tonal variations. Tone refers to the
brightness or darkness of a surface. Texture can be
defined as an arrangement of an elementary pattern,

variation in tone, that is present over an area larger

S ar o) 3

than the pattern itself. The photo interpreter relies on

the combined principles of texture ard tone to analyze

L% B §

aerial photographs. Texture is considered a useful

"’('.M"

descriptor in manual and automated land cover classifi-

cations, for just as surfaces with uniform spectral

A P P )

reflectance are considered to be objects, regions with

L5 %

homogeneous texture may also be considered objects.

" ST AT AN e R ORI

\R. ~ ~r.d\.4*r.~_‘l‘v‘ v rr,r .'\-r(. PR P o a N N -" . .r - . ./'.’ . _\"{_;.'_'J.;.F_'-.".F- X ..".PJ'



g

............

-

TP

R,

-

AR

Texture has been implemented in automated classifications

to segment classes of interest of a digital image (Jensen

and Toll, 1982; Shih and Schowengerdt, 1983; Hsu, 1978).
Texture must be represented numerically to be employed in
an automated classification process. Quantitatively,
texture is the local spatial tonal variation within an
image; also termed the coarseness of the data. A rough
texture, high spatial frequency, involves large deviation
of total variance; and smooth texture, low spatial
frequency, minimal tonal variation in the data. These

spatial frequencies are determined numerically with a

=

texture algorithm. Texture algorithms are often area

3

calculations indicating local tonal variance around an

:;~'1

image point, based on a mathematical operation on a window

of pixels. A window is an m by m array of pixels, where m

L L
P AP

is the size designated by the analyst.
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3.3 Texture Algorithms

[ s

g

)
In the literature, there are basically two approaches to 0

"
texture algorithm development: statistical analysis and ::

4

the Fourier—based approach. In a study by Weszka and

Rosenfeld (1975) it was concluded that statistical fea-
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tures perform much better than Fourier-based procedures
for generalized land cover mapping. Since, the consensus
from the literature is that resource textures are more
appropriately modeled by statistical measures, the Fourier

transform approach will not be discussed in this chapter.

Statistical Analysis of Texture

Statistic analysis of texture can be divided into two
levels of development: 1) the first order statistics in
spatial domain and 2) the second order grey level statis-

tics in spatial domain.

First order textural statistics are derived from neighbor-
hood calcialations. Local statistical values such as mean,
variance and standard deviation can be computed for the
pixels in a window that sequentially passes through the
image. These statistical values produced for each window
are assigned to the center pixel of the window, resulting
in a textural image of textural measures for each pixel
based on the tonal variation of its neighbors. Variance
can be calculated for a matrix of pixels (window) by the

following operation,
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This formula is called ’variance with respect to the

center’ or 'variance with respect to the average’', where

69

s

can either be the value of the center pixel of the window,

or the average of all the matrix elements, respectively.
| I |

’i’ and 'j’ indicate row and column addresses for the

neighboring pixels of the window.

Difference methods also indicate local textural
properties. There are three different operations:

horizontal, vertical and diagonal.

The horizontal algorithm compares the tonal variation on
each side of a given pixel according to the given

equation,

Thn (r,c¢) = | s(r,c~1) - s(r,c+l) |.

‘s’ is the tonal signal at each row (r) and column {c)
pixel address in the window, center pixel being s(r,c).
The vertical method compares the variation above and

below, relative to the image, a pixel with the equation
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Ty (r,c) = | s(r+l,c) - s{(r-1,c) |.

The diagonal approach compares the tonal variation of the

neighbors at the corners of a given pixel by the equation,

Tar (r,c) i s(r+l,c+l) - s(r-1,c-1) |

or

| s(r+l,e-1) - s(r-1,r+1) |.

Taz (r,c)

The diagonal computation is directional as well as
diagonal. Unfortunately, the difference methods are often

more of an indication of edges in a scene than texture.

Texture transforms are another approach for local measures
that can be considered first order statistical operations
(Hsu,1978; Irons and Peterson,1981). Many of the textural
transforms proposed by Hsu and Irons are more statisti-
cally rigorous than the ones mentioned above. Hsu de-
tailed 17 local descriptors in which four operations

evaluated the four central moments (mean, standard devia-
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tion, skewness, and kurtosis) of a the distribution of
grey levels in a 3 x 3 window. Various others were dis-—
cussed, such as mean contrast grey level differencing
among nearest neighbors, and a measure of the mean above
and below 3 datum planes in the data: 50, 100 and 150.
Irons developed several more descriptors on the basis of
Hsu's works that involved differencing of the maximum and
minimum values for the grey level distributioms, and also
the equation discussed above involving variance were
embellished through normalizing and maximizing and mini-

mizing operations which modified the equations.

The other group, termed second order grey level statis-
tical measures, base their higher order operations on
grey-tone spatial-dependence matrices, computed from
various angular relationships and distances between
neighboring resolution cell pairs in the image; also
refereed to as nearest neighbor grey-tone spatial-
dependent matrices (Haralick et al., 1973; Haralick and
Schanmugam, 1974). Each texture feature is derived from
these angular relationships; close related measures of the
matrix’s unnormalized frequencies quantized to 45° inter-

vals. Appendixes in both of Haralick’s publications have
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the algorithms for 28 textural features. Wiersma and
Landgrebe (1976) review four of Haralick’s texture
measures in closer detail: angular second moment,

contrast, correlation, and entropy.

3.4 Texture Implemented in the Classification Process

Texture is considered as another band of digital infor-
mation when implemented with spectral data in generalized
land cover classifications. For example, if 3 spectral
bands and a texture image were used, the training sets
statistics resulting would be represented in 4 dimensional
measurement space. Spectral and textural information are
then used simultaneously in a classification process that
accesses the image pixel by pixel. This is where texture
and spectral information differ regarding the relative
resolution of each. While each spectral pixel value
presents information about its own spectral reflectance,
each texture value, of an individual pixel, is the result
of an area calculation measuring the tonal variations of
its neighbors. Each textural value is a consideration of
an area of the spectral data and has a relatively larger

resolution significance.
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The neighboring pixels, composed of the window could span

land cover class boundaries. Land cover borders can and
are misrepresented by texture. As the window moves over
the boundary, the combined textures from each land cover
creates textural heterocgeneity and often misleads the
calculations causing a smearing of the textural infor-
mation over the land cover interface. This is analogous
to the mixed pixels in spectral data, but it depends on
the window size and can be much more severe. Such
‘boundary smearing’ is not permissible for detailed
digital land cover classifications when it is precisely
the boundary between the cover types that the analyst is
trying to discern (Jensen,1979). The smearing of the
boundaries is a function of the size of the window. Hsu
(1978) selected window sizes of 3x3 pixels rather than 5x5
for generating his final decision maps because of misclas-
sifications along the land cover boundaries. In Jensen
(1979), use of a variance coding calculation of texture
distorted class boundaries and decreased classification
accuracy, especially at the land and water interface.
Problems in classifications could also result when a land

cover class is smaller or narrower with respect to the
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window size (Shih and Schowengerdt, 1983).

Selection of the size of window is also dependent upon the

resolution of the image. High resolution imagery can have

more spectral variability per unit area than a similar
scene with lower resolution. Therefore, there could be a
significant amount of textural information in a small
window in high resolution images as compared to the same

window size in an image with a larger resolution ground

cell. This is indicated in a study by Irons and Peterson,

(1981). Using various textural measures, generated by
textural transforms similar to Hsu (1978), Irons classi-
fied Landsat Multispectral Scanner (MSS) image data which
has a resolution of 79 x 79 meters. Hsu classified
digitized high and low altitude black and white aerial
photographs at resolutions of 17.3 x 17.3 meters and 2.67
and 2.67 meters respectively. Using the same window
sizes, Irons concludes, "high resolution remotely sensed
data may result in more useful information for the
thematic mapping of land cover.”"” Textural patterns
evident in low resolution data may be larger than the
standard 3 x 3 or 5§ x 5 windows implemented in the

reviewed texture research. Low resolution images may
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require larger windows to analyze a significant amount of

the repetitious pattern, if it is present, for its tonal

- i
Sl Sl

variation; this unfortunately, inevitably increasing

textural boundary smearing.

F-P ol
-

Another problem could be the assumption that an individual [
land cover is represented by a homogeneous texture
pattern. Certain land cover types could contain several

different textures or textures similar to other classes B

¥

(Shih and Schowengerdt, 1983). For example, texture may

be very efficient at detailing the continuous texture of a

RN Y.

forest canopy, but the texture for an urban land cover

PN NI W I . W

class may not have as consistent and continuocus a texture
throughout the class. If this textural information is

implemented as a fourth dimension in the multivariate

P o 2k )
Y - Wy w Xy

statistical training set data, inconsistent texture values

ALY T4

for the urban area may contaminate the unimodal multi-

variate probability density function of a perfectly good

LA
U

training set. Although results from Jensen’s (1982)
classification of certain areas on the urban fringe, have f
! been very promising, it is unclear how many unsuccessful 5

projects have not been documented. In general, texture

for urban areas is not as predictable as that for a forest
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canopy. The converse of this argument is the potential
advantage of textural information when classes are spec-
trally similar but are texturally distinct (Shih and

Schowengerdt, 1983).

There have been many studies involving land cover classi-
fications using only textural information and the combined
spectral and textural information. From most of the
studies it is evident that textural data by itself is not
as successful as the combined information. And often it
has been found that textural information, when compared to
spectral-only classifications, has been selectively ac-
curate in describing only some cover types of an image

while failing to adequately describe others.

Haralick and Schanmugam (1974) segmented a Landsat MSS
scene using texture-only with a classification accuracy
according to test samples of 67.5%. Spectral-only was
more accurate with an assessment of 77%. The spectral-
texture classification resulted in a classification

accuracy of B83.5%. Jensen and Toll (1982) found that 1

combined spectral and textural data provided comp . =
information in describing cover types in an . m.a,-
e e e e T L L L T
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However, as mentioned before, not all classifications
involving texture analysis are so successful. Irons and
Peterson (1981) did not offer a quantitative assessment of
accuracy in their results, but did state that the various
combinations of the texture transformations failed to
provide useful texture classes, and that this sharply
contrasted with Hsu’s (1978) success. It should be noted
that the classifications that were done by Hsu and Irons

were texture-only.

3.5 The Benefits of Texture Measures

A benefit inherent in textural measures is that it can be
derived from the original spectral information through
algorithm transformations. A question is then posed,
which spectral band should be selected to generate the
most descriptive textural measures. In many instances in
the literature the red spectral band (.6 - .7 pm) was
chosen (Haralick and Schanmugam,1974; Jensen,1979;

‘ Wessman,1984). The red wavelengths are selected because
they delineate boundaries between natural and manmade
features; primarily because the red channel is a major

chlorophyll absorption band. Red light is absorbed by
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photosynthetically active vegetation (Wessman,1984).

3.6 Selective Contribution of Texture

Texture has been implemented simultaneously with spectral
data for classifying all the land cover in an image and

also certain select land cover classes of interest.

Textural analysis has been used for classification of
selected land cover within images. 1In Shih and
Schowengerdt (1983), texture was implemented to discrim-
inate between geologic classes that have spectral overlap
but are texturally distinct. Such classes were varnished
bedrock slopes and desert pavement, and also lightly
covered bedrock and alluvial surfaces. 1In Jensen and Toll
(1982) texture was used to detect five different levels of
residential land-use development at the urban fringe. 1In
the cited literature, although the whole image was classi-
fied with the assistance of textural information, only
select land cover types of interest were evaluated in the
experiments. It is not clear in these studies whether
texture was effective in classifying all cover types in an

image. Wessman (1984) postulated, from her results, that
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the contribution of textural information is selectively
better for classifying some classes than for others. An
assumption could be made, from the previous research, that
texture may be more useful when it is implemented in a

discriminant manner, for a specific purpose.

The selective contribution of texture in classifications
and the intent to classify certain cover types with
increased accuracy using texture, are the basic reasons
for the investigation of a different way to implement
ancillary data in a second stage post-classification
approach. A post-classification introduction of texture
to reclassify an image in a discriminant manner is

discussed in the next chapter.

3.7 Alternate Ancillary Data

Other ancillary digital data bases mentioned at the begin-
ning of this chapter could also be useful in image segmen-
tation, but are seldom implemented. For example, vegeta-
tion index ratios are mostly used in vegetation analyses
and change detections studies as an estimation of biomass

present in the land cover (Tucker, 1979). Vegetation
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index ratio equations involve the red and near infrared
spectral bands of a multispectral image: 1) normalized
ratio (IR - Red / IR + Red), 2) transformed vegetation
index [ sqrt (VI + 0.5)], or 3) a simple ratio (IR/Red).
Forest land cover and various gradations of vegetation can
be level sliced from a vegetation index ratio image.
Vegetation index ratios are derived from the original
spectral data, and could also possibly be more beneficial
in automated classification when implemented in a post-

classification approach.

Shih and Schowengerdt (1983) discussed the use of spectral
band ratios in classifications. As with the vegetation
index ratios, these ratios can delineate certain features
of interest in an image. Therefore ratios could be imple-
mented to verify or reclassify a spectrally classified

image, a technique detailed in chapter 4.

Geographic information system data bases are digitally

amenable data that could also be utilized in a discrim-

inant manner in classifications.

o
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A method which implements ancillary data in a discriminant

manner is detailed in the following chapter.
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Chapter IV v
. Semi-Supervised Two Stage Classifier R
. .
8 :!(
t
4.1 Introduction ]
This chapter discusses the development of a two stage %
!
) Semi-Supervised classification technique. The proposed ¥
Semi-Supervised clustering algorithm combines the advan- !
A K
K tages of an unsupervised method with the direction ﬁ
i
W
R (guidance) attributed to a supervised approach. J
B o'
! 3
g . The Semi-Supervised Second Stage classifier revolves ‘
. around two central ideas. First is the creation of a s
Semi-Supervised clustering process that requires initial
M L]
L)
" guidance from the user. Second is the development of a s
\ 0
b post-classification method with the capability to access ‘4
)
i
useful information from ancillary data, such as texture,
. ¥
¥
! to assist in reclassifying certain cover types in an an :
*
[} D)
image. {
. 3
i
: Although the title implies that these two processes are
) J
P sequential in application, they are not. The Semi- t
Supervised approach does not have to implement a reclassi- -
: fication; and the post classification does not require a n
X
, &
! ]
\ W
N K

1, 3 -
SOOI A7 ' " oy .' "- '\ ~.. " WX ..._ ..._ TgTisy? "\'\ '\'\ -.'- \i\~ \-f.-' "ot -\-r s ,i-r,_f v -f'.~



e TR IATIURG TN NI N T RO v ug’ Uat de Pt obet £, Vodgt gt tat o 2% 00 0t a0 " fa* . > ¥gt Fa dat 41" o)

3303
- o -

-
-

A e A A

83

Z el we g

' spectral classification that results from a Semi-

Supervised process. e

.

- e =~
Fogt-gm,

The combined classifier is a complete process involving:

1) A clustering technique (Semi-Supervised)
2) Intermediate step -~ Maximum Likelihood
classifier or a Box-Preprocessor Maximum
Likelihood Classifier
‘N 3) Post-classification acquisition of '
B Second Stage ancillary information

I
e -

-

. o o

4.2 Design of the Classification Technique

] The classification process is composed of two stages.
First, training sets are identified with a Semi-Supervised 5.

clustering scheme. These training sets are used by a

R i i
.r..----

maximum likelihood or a box-preprocessor maximum likeli- .

fi ™"
-

hood classifier to spectrally segment the scene.

Secondly, a Second Stage of digital information is ?
introduced through a technique that integrates ancillary )
information in a discriminant manner to assist in

increasing classification accuracy of a scene. \
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4.3 Part One : Semi-Supervised Clustering

The process begins with the analyst designating relatively
large training "areas"” (with polygons) over locations
containing the various spectral diversities of the indi-
vidual land cover categories (i.e., a forest training
"area" polygon may delineate an area containing stands of
different tree species). The user then designates the
number of spectral clusters for each land cover training
area. One or two training areas are defined for each land
cover category (for example forested land, urban areas or
agricultural areas). These training areas cannot be
equated with subimages, since the spectral diversity with-
in each polygon is intended to represent the one or two
land cover types and not that of the whole image. An
unsupervised clustering aigorithm looks into each polygon
with a 3 x 3 window (Figure 8). The clustering algorithm
is based on the FINDSET approach detailed in section 2.11.
With a user defined threshold for the sum of the variance
of the aspectral bands the algorithm searches for the
defined number of clusters (Figure 9). The window moves
through each polygon twice, in a checkerboard pattern; on

the second pass it looks at those areas that it skipped

|
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over the first time. The checkerboard sampling pattern
results in the windows touching only at the corners. This
should reduce the effects of autocorrelation if it is
significant. After the first 50 clusters are identified,
the two clusters that are most similar are merged, accord-
ing to the same statistical distance metric used in
FINDSET, reducing the number by one. This continues until
the polygon area is processed. The total number of clus-
ters is then merged down to the user defined number of

spectral classes for that area.

In short, a user defined number of cluaters are identified
to describe the various classes within each land cover
category delineated by a polygon. Such a Semi-Supervised
technique could be described as a stratified unsupervised
clustering technique. Since it entails both supervised
and unsupervised methods it is considered a hybrid

approach.

This technique is capable of reducing the bias, inherent
in clustering algorithms, of selecting clusters that
cannot adequately classify the whole image. Spectral

training statistics for all land cover classes in a scene
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that the user is interested in classifying, could be
identified with a Semi-Supervised clustering algorithm.
Spectral diversities within each category, could be
identified by this Semi-Supervised clustering procedure,
rather than through a multitude of training sets labori-

ously pinpointed by an analyst.

The number of pixels collected for each spectral cluster,
from the training areas, may not be sufficient to repre-
sent statistically valid training sets for their prospec-
tive spectral category, therefore more spectral infor-
mation from throughout the scene should be accumulated.

An adequate sample population would be 10n to 100n pixels,
where n is the number of spectral bands used in describing
the data. Thus, the clusters are then implemented as
seeds to pool spectral statistics from throughout the

scene to produce statistically valid training sets.

A 3x3 window is passed across the image, in a checkered
pattern, to test areas for spectral homogeneity, according
to a user defined variance threshold (Figure 10). Pixels
in the homogeneous areas are merged with the most spec-

trally similar seed cluster according to a minimum statis-
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tical distance operation. The seed clusters will not be
merge ' with each other. A transformed divergence require-—
ment must be met before a cluster from the image is merged
with a seed. A second pass is not made throughout the
scene, to test areas skipped while implementing a check-
ered pattern, due to the increased run time involved.
There is an option given to the user to classify the scene
with the incipient training sets, from the polygons,

without fulfilling the seed option of the program.

Use of the transformed divergence operation as a measure
of spectral separability should prevent mismerging of
spectral data. Mismerging occurs when the cluster to be
merged possesses spectral characteristics that are not
represented by any of the seed clusters. The Semi-~
Supervised training approach directs the unsupervised
clustering algorithm to train on certain areas. These
areas designated by the user may not contain all the
spectral diversity for a land cover type, thus when the
whole image is accessed these spectral signatures could be
mismerged with the improper training seeds. Transformed

divergence should prevent mismerging. Still, the result-

ing training sets would only be from the areas designated
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by the analyst; it is possible for the analyst to omit
certain spectral signatures resulting in unclassified

areas in the classification.

The resulting training sets are placed in a statigtical
classifier to segment the image into the directed number
of land cover categories. The analyst can then determine
the relative significance of the individual spectral
classes within each category. As explained before, an

example would be different species in a stand of trees.

Dﬁring the acquisition of spectral information, Second
Stage data may be simultaneocusly acces;ed and formulated
into statistics that represent the land cover of each
spectral class described in the clusters (Figure 9). For
each spectral window obtained in the polygon areas a 3 x 3
array of pixels in the Second Stage is also identified and
stored statistically. However, when the initial Second
Stage clusters are implemented as seeds, groups of pixels
in the Second Stage that do not meet a user defined vari-
ance threshold for the Second Stage, are not merged
(Figure 10). Also a transformed divergence criterion must

be fulfilled.
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Again, it is emphasized that the simultaneous acquisition
of Second Stage information is not required, if there are
no intentions of reclassification or a different approach

to reclassification is performed.

4.4 Transformed Divergence

Divergence is a measure of statistical separability be-
tween patterns (clusters); a distance measurement sen-
sitive to the means and variances of the distribution
(Lillesand and Kiefer, 1987). It can be written as an
equation involving the means and covariance matrices for

the two pattern distributions i and j, such as,

Diy = 1/2 Tr{(Zi-Z3)(Z3-1-2;-1)]
+ 1/2 TR[1/2(Z;-21+Z5-1)(Us-Uy)(Ui=Uy)T)
(Swain and Davis, 1978).

This computed divergence value has an unlimited range, 0
to infinity, but the transformed divergence is a metric
that has a minimum and maximum value that can be defined,

0 to 2000.




w1 og' K g Py Ag ¥ 13 057 89 Pa¥ 2% $a¥ §a¢ gav 0 AR TN N Sg 88 @Vp 0% D [ e ., v *, DYV XTI % <afat, v ogy b " *aY "mb * v y " ."‘
'

)
i

3
0
!"’
A
|':ﬁl
DX
t"'
oK
o
93 Wy
(X
I:‘
!
%,
(Dij/s) B
D, . = 2000 x [1l-e ]. &;
igT .‘0'.
A
U c:
W32
A transformed divergence solution of 0 - 1500 indicates A”
that the clusters are spectrally similar (Lillesand and Q%
e
Kiefer, 1987) and can be merged. A value above the 1500 X
J"
)
threshold indicates a 90% probability of being statis- ia
tically separate. Therefore, the homogeneous clusters %?
¢
that are merged to the seeds in Semi-Supervised approach ?s
J
A
must meet this range of transformed divergence mea- N
surements before merging takes place. %
-27
"
o
Wi
4.5 Second Stage Reclassification Approach %i
2
2
oy
4.5.1 Introduction Q&
o
v
%
After the image has been classified spectrally, a Second 0
A
Stage of digital information is introduced to potentially ‘%
)
increase the accuracy by verifying and reclassifying the
spectral segmentation. The terminology ‘Second Stage’ is o
I5 4
synonymous with digital ancillary data in this study. In ﬁ‘
the discussion of the theory of the reclassification,
texture will often be referred to as the Second Stage due ]
3
Y
by
]
X
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to its relevancy, in the discussion, but other ancillary ﬁ
data is amenable in the process. o
l..‘

KA
i
In the past when spectral and texture features were com- ﬁn
bined for scene segmentation joint multivariate training q;!
0!'

statistics from both spectral and textural information %
l,:

were employed (Jensen and Toll, 1982; Shih and 5}
Schowengerdt, 1983). However, ancillary data may be more by
9
beneficial if it were introduced, in a limited manner, 'ﬁ
1

such as in the post-classification process which will now 5
be discussed. %
.‘
y
..‘

?

}

Probably not all the land cover classes spectrally .¢
classified should be reclassified with regards to the g!
I

Second Stage. Second stage data such as texture can be ?ﬁ
o

relatively important in the final classification for only :l
a few land cover classes. Studies previously mentioned, .W
Y
in chapter 3, demonstrate texture to be most useful in N
A

limited operations. g
'.g

4&

In a post-classification process, the user designates the ;k
‘1

appropriate land cover types, of a spectrally classified f
image, to be reclassified according to textural infor- 4
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mation. This prevents land cover types from being indis-
criminately classified by texture; only the appropriate

land cover types are reclassified.

Reclassification among certain land cover types could
produce favorable results. For instance, relatively high
textural values can be found within tree canopies that are
unlike the texture for grassy open fields or moderately
textured brush. Access of Second Stage textural infor-
mation should alleviate misclassification of grassland and
other such vegetation with forested land that may be
spectrally similar but texturally distinct. Similarly,
the Second Stage should be competent in dealing with other
classes. The user must designate the land cover cate-
gories that are to be reclassified according to the Second

Stage of information.

There are two different approaches to reclassification:
statistically based procedures and thresholding proce-
dures. The statistical method permits the implementation
of Second Stage statistical files, such as textural sta-
tistics. The thresholding procedures allow threshold

amenable data to be input into the reclassification. A
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binary mask or a geographical information system data base
are ancillary data that are amenable to threshold reclas-

sifications.

4.5.2 Statistical Reclassification

The statistical based approach will be discussed with

texture as the Second Stage data base.

The same training areas used in identifying the spectral
clusters will be utilized to find training set statistics
in the Second Stage (see Figures 9 and 10 and also section
4.3). These Second Stage training sets should describe
the individual land cover classes with ancillary data.

For each pixel classified spectrally there is a corre-
sponding textural value from the same spatial location
within the Second Stage image. If the Second Stage infor-
mation for the spectrally classified pixel is similar to
the Second Stage statistics compiled for that class, then
the pixel is considered correctly classified. Conversely,
when a pixel that is spectrally classified as a certain
class has a different textural value than that associated

with that class, then it is considered unclassified from




that class.

When a pixel becomes unclassified it must be reclassified
according to the Second Stage data. Once again, in this

step the analyst would designate the land cover classes to

be reclassified, if misclassified, and the classes into
which each can be reclassified, including priority. This
process obviously requires some a priori knowledge of the

scene or experience on the part of the user.

The user designated specifications will create a reclas-
sification table that will be used by the algorithm to
conduct the reclassification among the appropriate
classes. Spectrally classified pixels, of the classes
designated by the user, will be reclassified according to
the reclassification table. This table will be an
arrangement of conditional statements, representing the

decision rules for reclassification (Figure 11).

The reclassification table will contain the land cover
class to be reclassified and the classes into which it can
be reclassified. Also the user must designate a proba-

bility threshold (standard deviation), so that the dis-

¥
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criminant function (box-filter) can be utilized to reject

a classification, if the probability is too low.

To illustrate the function of the reclassification table,
the following example is provided (Figure 11). Assume the
classes into which the forest canopy can be reclassified
are brush (rangeland), grass, and marsh vegetation; listed

according to priority. (these are chosen as examples and

'
in the flow chart are called alternate classes). The
algorithm will go into the image and find pixels spec-
trally classified as forest and test its registered
textural value. If this textural value is considered to
be of this forest class, according to the statistics

. describing the texture for this class, and surpasses the

a probability threshold designated by the user, it is not
reclassified. But if it is not described by the textural
box type filter, or it is described, but falls below the
probability threshold the pixel will be reclassified. The

textural value is then compared to the textural statistics

reclassification. An identical type of test is performed
for this class and subsequent alternate classes designated

until the forest class is reclassified. If the forest

d
R
;
A
’,
)
)
5 of the first alternate class designated by the user for
E
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pixel is not reclassified when the designated classes are

exhausted, then it remains classified as forest.

4.5.3 Threshold Reclassification

Any ancillary data that is amenable to thresholding proce-
dures can be implemented to reclassify certain classes of
the spectrally classified image. Thresholding involves
the identification of certain ranges or individual digital
values in an image for enhancing certain features in the
image or delineating certain cover types in the scene.

Thé latter is the purpose behind the threshold reclassi-

fication approach.

A polygon mask will be employed as the Second Stage image

file to illustrate this approach.

As with the statistical option, threshold reclassification
will only involve the appropriate classes in the classi-
fied image. The threshold technique permits reclassi-
fication according to individual values or ranges in the
Second Stage instead of statistics. The pixel is reclas-

sified into the class indicated by the analyst.
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: For example, a body of water in a scene has specular

; reflection that is spectrally classified as bare soil and 2
: wet grassland because of its spectral signatures. A j
ﬁ polygon mask, of the water body, is generated by delin- %
z eating the water with a polygon and using a poly-masking %
Q program. The masked image file has "zeros"” in place of A
; the water (polygon) and unchanged values everywhere else ¥
i in the image. .:
;
5 With the threshold reclassification technique the analyst
? could declare all bare soil and grass in the image to be &
’: tested against the binary file. Every pixel that is ?
. classified bare soil and grass and has a zero in the ;
: Second Stage data file will be reclassified as water. E
This could adequately remove the specular reflection. E
: >
? Not all threshold amenable files are binary. Some will ?
! contain more than two levels of data. For example, i
'; geographic information system data bases have levels for N
X every category in the file. A zoning class data base may L
.t have a level for each zoning category: different groups of h
" industrial, commercial and residential areas. A county
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soil survey file may have levels for individual soil

textures.

To verify or reclassify certain land cover classes in a
spectrally classified image, an analyst may be interested
in comparing the classified data with certain ranges or
individual digital values in the Second Stage. Two
options are available for threshold reclassification. The
first one involves reclassifying classified pixels accord-
ing to a threshold level. This would reclassify a pixel
into a designated class if the value in the Second Stage
were less than or equal to the threshold value. The
second, reclassifying classified pixels according to a
threshold range, would reclassify a pixel into a class
designated by the analyst if the value in the Second Stage

were within this range.

The analyst input to the reclassification process would be
the classes to be reclassified, the option (by threshold
value or by threshold range), the threshold value(s) and

] the class into which it is permitted to be reclassified.
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To illustrate the function of threshold reclassification v
see the flow chart, figure 12. The designated spectrally
classified pixel is compared to the corresponding Second X

Stage value according to the option 1 or 2 decision rule.

Option 1: For each classified pixel designated, if the )
Second Stage data base value is less than or equal to the H&
threshold value, defined by the user, then it is reclas- -ﬁl
sified into another class, also defined by the analyst. X
(There is also an option to reclassify or not to reclas-
sify if this requirement is met.)

Pad?

Second Stage value ¢ threshold EH

-~

Option 2: For each classified pixel designated, if the ?:
=Y.

Second Stage data base value is within the range,
described by the analyst, then it is reclassified into
another class, defined by the user. (There is also an
option to reclassify or not to reclassify if this
requirement is met.)

.
A VLA,
s v 2 %

. _

'S

:“ 1"""l.‘

&

- .

thresholdl < Second Stage value < threshold2

4.6 Summation

In summation, the Semi-Supervised Two Stage Classification

Technique is a combination of two procedures that can be

S W S

executed independently. The Semi-Supervised clustering

algorithm can be used to classify a scene that will not be

¥ -.‘.',-’-'.

reclassified. And an image classified with procedures

other than the Semi-Supervised technique can be reclas-

»
-
L

sified. The title indicates Second Stage statistical

e o L A
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'; L CLASSIFIED PIXEL |€

; ACCESS 2ND STG. DIGITAL VALUE
| OPTION 1 or 2 ><> not agree
; agree
: N2
3 RECLASSIFY
Figure 12, Threshold Second Stage reclassification
approach,
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information for the spectral classes can be simultaneously

acquired with the Semi-Supervised clustering algorithm.

The Semi-Supervised (directed) clustering approach may
potentially reduce the clustering bias of the FINDSET
algorithm. Also with the transformed divergence modifica-
tion mismerging of spectral clusters should be avoided
when the seeds acquire more spectral information from the

scene.

The post—-classification reclassification technique can be
used to reassess certain classes, in a spectrally clas-
sified image, according to ancillary data. This discrim-
inant process has two methods of operation: statistical
reclassification and threshold level reclassification.
The Second Stage statistical information can be obtained
in a Semi-Supervised manner or in a supervised acquisi-
tion; the only thing that is required is that there are

Second Stage statistics for each spectral class to be

verified or into which it will be reclassified. The
Second Stage data base for the second option must be
amenable to thresholding, such as binary masks, map

overlays, digitized soil surveys, GIS data bases and even
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images that have been ratioed, if the relevant digital N
values are known. Any digitally amenable ancillary data :
could be implemented in a post-classification -~

reclassification process.
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Chapter V

Methodology

5.1 Introduction

Evaluation of the Semi-Supervised Two Stage Classification
Technique involves two sets of experimentation. One is
designed to evaluate the Semi-Supervised clustering
process and compare to the FINDSET unsupervised approach.
The second is intended to demonstrate the utility of the
Semi-Supervised clustering accompanied by a Second Stage

reclassification technique.

5.2 Study Sites

There are two study sites evaluated in this thesis.

The first is a subimage from a SPOT satellite image
located over Madison, Wisconsin. It was acquired on June
3, 1986 at about 11:00 AM Central Daylight Time (Figure
13). The subimage is 512 columns by 480 rows and is
located over the community of Middleton area of the
Greater-Madison area. Figure 13 is false color composite
of the three spectral bands recorded by the SPOT satel-

lite: green, red, and infrared. The western edge of Lake
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Mendota can be viewed in the bottom right of the scene. :E
»
The land cover types in the image are primarily agri- :;
| cultural in nature with 3 wetland areas: Waunakee Marsh %.
(upper left), Dorn Creek Marsh (center right), and the N
Pheasant Branch Creek Marsh (bottom right). The image was W
I‘|.
taken early in the growing season, therefore most row gﬁ
" +
crops are primarily depicted as bare soil and emergent ﬁ}
»
vegetation. Perennial alfalfa fields are present through- Ve
]
out the image. With a pixel ground resolution of 20 sh
o
meters, the area covers approximately 10 kilometers Pﬂ
2
(approximately 6 miles) in each direction. $=
"
.:
5
The second is a digitized aerial photograph taken over the ]
Chesapeake Bay Region, near Edgewood, Maryland (Figure e
&
o
14). The prominent ground features in the image are g
Watson Creek, and two partially reclaimed landfills sur- éf
]
rounded by thick forest canopies. It is a color infrared NS
aerial photograph taken on June 24, 1981. The image is N
467 columns by 400 rows, with a pixel resolution of 0.50 t
)
meters. Each pixel is a point sample of approximately "
o~
every 3 meters on the ground (every sixth pixel of the :f
* i
original digital image). The scale of the digital image .
as viewed on the screen is 1:8000 and covers an area of Py
"
N
o,
)
2
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Figure 13, Middleton area study site, SPOT satellite
sub=-scene,
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Pigure 14,

Chesapeake Bay region study site
(original scale 1:10,000).
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1.3 km by 1.1 km. The site contains 5 basic land cover
categories to be segmented: forest, grass area, bare soil

(dry/disturbed land), man-made features and water.

5.3 Clustering Evaluation

The Middleton subimage will be used in the clustering
evaluation of the algorithms. In evaluating the Semi-
Supervised clustering process, the resulting classified
images from the Semi-Supervised clustering and FINDSET
clustering will be compared, and accuracy analysis will be
based on a supervised classification of the same scene.

To analyze clustering bias 4 different rotations of the
image will undergo clustering analysis and classification.

No spectral information is lost in the rotation.

A threshold variance must be selected for the clustering
algorithms. A variance threshold of 30 was selected to
identify homogeneous 3x3 windows in the Madison scene.
This threshold has been selected in accordance with exper-
iments in the previous months that evaluated clustering at
different logical threshold values. It was concluded that

the suggested threshold of 30 (Ahearn,1986) for the sum of
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the variances in the spectral bands, adequately segmented

the image.

The selection of the variance threshold depends on the
land cover classes one is interested in describing. To
acquire training set statistics for uniform spectral
resources such as agricultural fields a lower variance
threshold should be selected. A selection of a higher
variance threshold would also permit training sets to be
identified for resources, such as forested areas, which by

nature have a high variation of spectral response.

The Semi-Supervised approach requires the analyst to des-
ignate a transformed divergence threshold value to prevent
mismerging of spectral data. A value between 0 and 2000
can be selected. Statistically, a value equal to or
greater than 1500 indicates that there is 90% confidence
that the clusters being compared are spectrally separate
and should not be merged. In these studies a value of

1500 was used in the clustering.
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At the Environmental Remote Sensing Center (ERSC) at the
University of Wisconsin—-Madison there are two programs
that employ the SEARCH clustering method (see section
2.10): FINDSET and FINDCLASS. FINDSET was written first
and did not calculate a covariance matrix for the training
sets. FINDCLASS was written second and calculates a
covariance matrix. The algorithms are also different in
the way each accesses the image. In FINDSET 240 columns
of the image at a time are processed, stepping over 240
columns sequentially until the entire image is accessed.
FINDCLASS evaluates all the columns in the image at once,

sequentially evaluating every three rows.

Through preliminary analysis it was discovered that
FINDSET did not access more than 240 columns in the image.
The statisticé that were gained from a subimage of 240
columns were identical to those of an image of 512
columns. Meanplots for 50 clusters from both images, of
240 and 512 columns, can be viewed in figure 15 and 16
respectively. No water bodies are located in the first
240 columns of the image. If clusters describing the
water were identified their means would plot in the lower

left hand corner of the meanplots, an indication of low
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b

' spectral reflectance in the red and the infrared bands. !
S The vertical axis is the red spectral response while the d
3 o
3 ",
p horizontal axis is the infrared. To verify the possibil- :
ity that training set statistics for water were never o9
clustered, supervised training sets were acquired for the e
. . . A
four different water bodies in the image. The statistics ﬁ

were plotted with the other 50 clusters in figure 17. b

R . )

Note the differences in the lower left section of the i
)
meanplots. Training sets for water were never acquired. ;.

K4

FINDCLASS was evaluated in a similar study ensuring it e

i
accessed all the rows of an image, and was employed as the 73

. ‘.

'FINDSET’ algorithm in which the Semi-Supervised approach :ﬂ

would be compared. ¥

¥

~

Py

All classified results from the clustering algorithms will Y

be compared to the same thematic map that was segmented :\

using a supervised analysis. This thematic map in figure :!

~

18 was generated by the Environmental Monitoring Practicum :

4

Analysis class (Blohm, et al., 1987). The author of this :»

thesis was one of the primary classifiers in segmenting :

“»

the Middleton image during the practicum analysis. After ;

R

months of spectrally analyzing the image and several field :;

verifications, this scene was classified with 72 training
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Figure 18. Supervised classification of the
Middleton study area,
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sets yielding a per pixel accuracy of 88% according to 95
test sites selected in the image. For the practicum anal-

ysis the image was classified into 12 land cover classes.

Unfortunately, information classes do not necessarily

represent spectral classes, which facilitate the eval-
uation of a clustering algorithm. Therefore, the super-—
vised classification was renumbered accordingly. One of
the ciasses modified was the row crop category, which
contained 3 separate spectral classes: bare soil, hay I,
and hay II. They indicate 3 different levels of vegeta-
tion growth, in which both hay classes are titled as such
from ground truth information in the Middleton area. To
properly evaluate mismerging of spectral data by unsuper-
vised clustering algorithms it is appropriate to analyse
the segmentation of such spectral classes, rather than the
previous information classes. The resulting thematic map
involves 12 land cover classes: wetland (emergent vegeta-
tion), bare soil (row crop), hay I, hay II, peas, dis-
turbed vegetation, water, quarries (disturbed land), urban
(roads), forested areas, and an unclassified category.
Forests, wetland and disturbed vegetation are spectrally
similar and were very difficult to segment in many

instances. Disturbed vegetation is an information class
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describing over-grazed pastures dominated by low growing
herbaceous vegetation. This class was selected because it
was consistently misclassified as wetlands and forest in
fields within the image. It must be noted that most
training set polygons for these classes were not acquired
within this sub-scene. The study area for the practicum

analysis was 1440 rows by 1094 columns.
5.4 Clustering of the Rotated Images
To analyze the Semi-Supervised and FINDCLASS clustering

algorithm for clustering bias, the Middleton image was
classified at different orientations. There are four
basic orientations, the original orientation (0 degrees),
i seen in figure 13, and three relative rotations: 90, 180
and 270 degrees. Both algorithms were required to iden-
i tify 50 clusters in each of the four orientations, and 27
' clusters in the 0 and 90 degree rotations. The resulting
classifications segmented with FINDCLASS can be viewed in

|
\ figures 19 through 24, and those classified by the Semi-

Supervised approach can be seen in figures 25 to 30.
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In the four rotated Middleton images, FINDCLASS was
directed to identify 50 clusters, and in the typical
orientation and the image rotated 180 degrees 27 clusters
were requested. In figure 19, the FINDCLASS algorithm
found 48 clusters and classified the image into 12 land
cover classes: wetland (emergent vegetation), bare soil
(also row crops), alfalfa, hay I, hay II, peas, disturbed
vegetation, water, quarries (disturbed land), urban
(roads), forest and an unclassified category. The FINDSET
and FINDCLASS algorithms identify 49 clusters when 50
clusters are requested because there is a final merging
between two of the 50 clusters after the last cluster is
identified. In the case of figure 19, 49 training sets
were identified and one could not be implemented into a
statistical classification program because the covariance
matrix was not acceptable (see section 6.3 in chapter 6

for details).

Figures 20, 21 and 22 involve the same image that has been
rotated from its original orientation in figure 19,
analyzed with the FINDCLASS clustering algorithm with 50

clusters, and classified. Figure 20 shows the classified

image rotated 90 degrees; figure 21 rotated 180 degrees,
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{ and figure 22 rotated 270 degrees. Figures 23 and 24 are <
the same orientations as in figures 19 and 21, but the b

FINDCLASS program was asked to identify only 27 clusters.

=
AKX

-y

The Semi~Supervised clustering method was employed and

yielded the 6 classified images in figures 25 through 30.

D GRS ™

Figure 25 illustrates the classified image in its original
iy orientation; figure 26 rotated 90 degrees; figure 27
rotated 180 degrees; and figure 28 rotated 270 degrees. N
N Figures 25 to 28 are segmented with 48 to 49 clusters. y
K Figure 29 is the original orientation classified with 26
Semi-Supervised clusters, and figure 30 is rotated 180
degrees and classified with 27 clusters. The classified
i images of figures 25 and 28 were classified with only 48 £,
Semi—-Supervised clusters to retain an equal comparison E

M with the FINDCLASS output in figures 19 and 22.

Figures 19 to 30 were classified using a maximum likeli- e
hood classifier with a box pre-processor filter (see ?
section 2.4.5). Pixels lying outside of the box filter
were unclassified. This classification algorithm will

classify only the image pixels described by the training

sets. -
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Figure 23, Resulting classification from 26
FINDCLASS clusters, original
orientation,
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Figure 24, Resulting classification from 27
FINDCLASS clusters, rotated
180 degrees,

. e W W e e Y T

- -t - - - « - ) PRI - f
DY 1% P VA R B SR S L ST AR (O v SRS CE LR SR LR AN,




TR AR E A EL e ‘.- g

| Yad el Sah g 00 Dol Aod P L 0.5 0 ) il Gob uwmwmmmrmmmwmw'mﬂwwﬁ

129

kA

AR T P 3

., \o‘ ——
3350 POl b M P I ..ﬁ\ i

e Dy ¥ o o ailon o,
u-&..'\u.\..\f..f aty SN NMSNE LT

Resulting classification from 48

Semi~Supervised clusters,
original orientation.

Figure 25,

PRI T LR
PRy b P \-\\f

”

®
LI
-l

-

“

-

A AT AN

.\.—_..-\.r\. 0

- N T 2T
s AW,
'a! A

AT AT A
A e S

AR

DO G e S IR AT T N



O LWL

s

La’A 2% MR LN S Rt RS R Vot S et 6 a0t 0 0% a0 et pte n Enle R p i T A G A B R A Bg e hn Ta s gt o sVl 8 L " & i  ha a e ate ath At 2%

130

Figure 26. Resulting classification from 49
Semi-Supervised clusters,
rotated 90 degrees.
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I'igure 27. Resulting classification from 49

Semi-Supervised clusters,
rotated 180 degrees.
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Figure 28, Resulting classification from 48
Semi-Supervised clusters,
rotated 270 degrees,

Y RO R

Fay '_'."C

. ~ - - - . - " - - LY U BN B Y L NG R ] L - - - . - - > ) - “w Al i P - - f
kﬁﬂ\hﬁfﬁi\i\iﬁﬁﬁmx‘-ﬁaﬁx‘.ﬁxﬁfiﬂ-.ﬁﬁ.ﬁta{\M{Aﬁﬁ.‘ﬁa.'f‘g.{;:\'t;{-ka.ﬁ';ﬁ:immt&{..ﬁ. AT TN AT



. § » VR L, iy gtatal od ¥ Al a Y Y T L N TV O T F W Y
b -
s
t.
4
g
“
%
- )
t l:
: 133 o
t 4
‘ q
.
A
»
&
~
N
-
\ o
; <)
3 'Cf
b 3
&
hY
3 Y
»
‘ S
. N
e
R
) .
1 s
D o
"-
» U
- \
B ‘
Figure 29, Resulting classification from 26 N
Semi-Supervised clusters,
original orientation,
U
J
{ ;
] r
t:‘
)
1 P
[a*:
[}
'
) ~
1 .

[ "
A e N S G 8 T W A T R S B e NN A A AN AT T (T T s TN WO g ) T L W M M e Y



- h\\ﬂ\.h\n...

134

l4 l-iu l- .l..”l,— \

Resulting classification from 27

Semi-Supervised clusters,
rotated 180 degrees.
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5.5 Spectral Mismerging Evaluation

To evaluate spectral mismerging, the rotated classifica-
tions discussed in the previous section, figures 19
through 30, underwent accuracy assessments. Test sites
were delineated in the images and the resulting contin-

gency tables were analyzed.

Mismerging of spectral data during the clustering process
can be analyzed by assessing the classification accuracy
of certain cover types that possess clearly defined
boundaries in the supervised thematic map of Middleton.

Test sites are placed in these spectral classes, in the

classified images resulting from the FINDCLASS and Semi- N
Supervised clustering analysis, and contingency tables are E
produced to evaluate the errors of omission and errors of E
commission. %;
Classes that possess clearly defined spectral boundaries
are bare soil, alfalfa, hay I, hay II, and some of the
forested areas. The remaining classes in the image do not
possess boundaries that can be considered spectrally
absolute, such as disturbed vegetation, wetland and some

)
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of the forest class. These categories have boundaries
that interfinger throughout the wetland areas and other
locations in the Middleton area. To quantitatively
evaluate the clustering algorithms for mismerging, test
sites were placed in areas known to be clearly defined
classes. Test sites were not placed in the wetland and
disturbed vegetation classes. Besides not having discrete
boundaries, supervised training sets statistics for these
classes were not easily acquired and most were not even
attained from this sub-scene. Therefore, an unsupervised
clustering algorithm cannot be expected to cluster quality
training set statistics for these classes that may not be
present. Test sites were not placed in the urban areas,
disturbed lands or the roads. These are not prominent
features in the image and good training sets statistics
for these classes were not acquired in this sub-scene

during the supervised training process.

Test sites were drawn in the supervised classified image
in areas described as bare soil, alfalfa, hay I, hay II,

and forest. Table 1 tabulates the site allocations.
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Table 1
TEST SITES EMPLOYED

Land Cover Class Number of Test Sites

Bare Soil
Alfalfa
Hay I

Hay II
Forest

[So2N¢ TS S BN

5.6 Demonstration of the Semi-Supervised Two Stage

Reclassification

To demonstrate the Semi-Supervised Two Stage process, the
Chesapeake Bay image (Figure 14) was classified using the
Semi-Supervised clustering method and then reclassified

according to a Second Stage of ancillary data.

The Semi-Supervised clustering algorithm acquired 25
training sets defining the spectral diversity present in
the forest canopy, grassland, water, soil and man-made
features. Three different reclassifications were imple-
mented separately according to texture, vegetation index
ratios, and a polygon mask, to exemplify the 3 different
options for reclassification: statistical, threshold range

and threshold value, respectively.
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As can be seen in figure 31, polygons were placed over
regions that represented the spectral diversity of each
land cover type. Four polygons were used: two in the
forest canopy, one over the grassland and bare soil (this
polygon is difficult to discern but is within the oval

landfill), and one over the water body, Watscn creek.

The Chesapeake Bay image has the potential to demonstrate
the fact that cover types which are spectrally similar are
often misclassified and can be reclassified using ancil-
lary dat;. The shaded areas in the forest canopy and the
dark wet grassy areas, assumed to be marsh, are spectrally
similar and classified as forest according to the training
set from the forest canopy. All the pixels in the image
were classified with a maximum likelihood routine. In
figure 32, the areas misclassified as forest are located
primarily in the marshy grassland. More spectral statis-
tics could be gathered from the image to possibly elimi-
nate this problem or a reclassification with ancillary
data could be attempted. To demonstrate the reclassifica-

tion method the later was selected.
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Pigure 31, Chesapeake Bay study area with
Semi-Supervised training areas
delineated.
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Chesapeake Bay Semi-Supervised spectral
classification,

~ LW

A PR P R P P P P A P P T IS

-y % &« & =

=

NG RAN VYYD

ZL 5y 5

_ e

PR}
[4

\.‘i‘nv'

R AL

r NS



-._’

o Bavada‘ fav et gt fav gk . R TR
e a%h gy som - - WO X0 TR

141

Reclassifications were accomplished employing textural
information, vegetation index ratios and a derived polygon
mask, as ancillary Second Stage data, and can be seen in
figures 33 to 37. The resulting reclassified images are
listed in table 2. The Second Stage data bases such as
texture, vegetation index ratios and a polygon mask are

described in the following sections.

Table 2

LIST OF RECLASSIFICATIONS

Figure Type of Second Stage

33 Texture

34 Vegetation Index Ration (VI)
35 VI (smoothed)

36 Polygon Mask

37 Polygon Mask and VI

5.6.1 Texture - Second Stage

Textural statistics for each spectral training set are
simultaneously acquired in the Semi-Supervised process

from the textural image in figure 38.
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Chesapeake Bay area reclassification
with texture,
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Chesapeake Bay area reclassification
with a vegetation index ratio.
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Chesapeake Bay area reclassified with
a smoothed vegetation index ratio.
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Figure 36. Chesapeake Bay area reclassified with
a polygon mask.
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Chesapeake Bay area reclassified with
both a vegetation index ratio and a
polygon mask.
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Pigure 33, Chesapeake Bay texture imace. .

It A IO N e

= T I P




Yy & Fr e o

‘o

-

P o 2

-

LR AR

| NS

W L O AW I W A AT RN I A N A S A N VA Y Y A RN A N SN A NN N S VN VOV YOV ow Y IYy

R R

148

The textural algorithm that will produce the textural
information should be very responsive to the textural

differences between forested and non-forested land cover.

The literature used to develop the textural algorithms on
the IBM AT’s, at the Environmental Remote Sensing Center
Micro-processing Laboratory, suggested that four algo-
rithms are relatively ideal in discriminating between
forested and non-forested land cover (Weszka et al.,
1976). These are the lst and 2nd order grey level statis-
tic algorithms called Mean and Contrast. Of these four,
the 1lst order Mean and Contrast were compared, to evaluate
which one was the prime discriminator. The 2nd order
algorithms were not tested since (1) their computer pro-
cessing time was longer than the lst order, and (2) the
difference in the textural output of the lst and 2nd order
Mean and Contrast programs was insignificant considering

the extra time it takes to run the 2nd order algorithms.

The 1lst order Mean program was proven more responsive to
the texture than the Contrast algorithm. An effective
window size, 9 x 9, was selected after many experiments.

As a smaller window was implemented, the textural values
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within the forest canopy became patchy, salt-and-peppered
gray tones, and the variance among the different textural
values increased. A window size of 9 x 9, the largest one
that can be selected in the program, produced more consis-
tent textural values within the canopy, with less vari-
ance. The direction values, in the algorithm, were chosen
according to the appearance of the output they produced.
Using a 9 x 9 window as the delta values decrease, from
‘delta row’ = 5 and ‘delta column’ = -5, to ‘delta row’ =
1 and ‘delta column’ = -1, the output became stringy, with

the appearance of noodles on a dinner plate.

During a previous project in which this area was classi-
fied with spectral and textural information, this author
found that a 9x9 window caused smearing of textural infor-
mation resulting in misclassification along the boundary.
Since the Mean program requires a 9x9 window to completely
describe the texture of the canopy, another algorithm was

evaluated.
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An assessment of the two lst order textural operations,
1 standard deviation with respect to the average, and the
' standard deviation with respect to the center, yielded
H positive results. Both algorithms were compared using a

3x3 window and the ’'standard deviation with respect to the

average’ appesred to have the most continuous texture for

J describing the forest canopy. The textural image was
smoothed twice with an average spatial filter to ensure as
continuous and consistent a texture as could be attained

(Figure 38).

In figure 38, bright pixels indicate high textural values,
also referred to as a rougher texture. As discussed in
chapter 3, texture may enhance edges in an image, such as
the high textural values along the water and grassland
interface around Watson Creek. In general, the forest
canopy is represented by digital values ranging from about
70 to 119. Grass contains textural measures in the 20’s.
Meanwhile, the edge anomalies in the data along Watson
creek have measures in the 60’'s and the 70’s, not repre-
sentative of either the grass or the water. Edge enhance-
ment also occurs on the landfill, in the center of the

image to the right, and also along the sinusocidal roads at
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the top of the image. A 3x3 window was used to create
this textural image to reduce these edge enhancements and

texture boundary smearing, in general.

A spectral variance threshold of 300 and a textural vari-
ance threshold of 70 were designated for the Semi-
Supervised clustering of the Chesapeake image. A variance
threshold of 300 permits the clustering of training sets
with high standard deviations which are typical for spec-
tral statistic of digitized aerial photographs with this
resolution. A value of 70 was found to be a reasonable
threshold for texture, affording clusters with high vari-
ance to be identified. High variance is often associated

with textural information.

The polygons in figure 32 were simultaneously drawn over
areas that contained textural information representative
of the spectral class. Therefore, the texture statistics
were successful in representing the cover type identified

by each spectral class.

The red band was selected as the channel in which texture

measures were computed for this image (for background
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information see section 3.5).

5.6.2 Vegetation Index Ratios - Second Stage

Two vegetation index rations were calculated from the
spectral data: (1) the infrared band divided by the red
band (IR/RED), and (2) RED/IR. After the ratio is
computed, the resulting values in the image are stretched
linearly to normalize the values from 0 - 255. In the
RED/IR ratio low digital values 0 - 6 represent the forest
canopy. This is because low digital values in the red
band are divided by high digital values in the infrared
band resulting in small numbers, that are still low
ranging numbers when stretched linearly over a range of 0
to 255. The IR/RED ratio resulted in high values repre-
senting the forest. These threshold ranges were identi-
fied using an interactive program that level slices ranges
or values of an image on the computer monitor. Through
visual analysis it was determined that the IR/RED ratio
was slightly more descriptive of the canopy, with digital

values 21 - 255 selected and displayed in figure 39.
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To produce a more continuous representation of the forest
canopy in the vegetation index ratio the image was
4 smoothed employing an average spatial filtering operation

(Figure 40).

As an aside, in the vegetation index ratio, image values 0

- 9 identified water bodies, 10 - 20 grass, soil and man-
made features, and 21 - 255 represented the forest canopy. Q
A
A
The threshold range 10 - 20 could be broken up into ranges ”
-
i that would separate grass and manmade features if the 2'
)
h analyst were interested in doing so. o
b o
¢ )
; x
' Both ratio images figure 39 and 40 were employed in the g
i
reclassification process. N
4
4
{ 5.6.3 Polygon Mask — Second Stage
|
]
4
E The specular reflection in Watson Creek can be reclassi-
F fied by implementing a polygon mask.
)
p »
i .
P
g A polygon mask is created by altering all the values in an b
\‘
» \I
' image delineated by a polygon to a specific digital num- :
! ber, with the assistance of an image-processing program. :
E \
A )
o
Y
~ i
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A polygon mask can be placed into any band of data; in

this experiment, the red band was selected. With an

interactive program a cursor was used to draw a polygon

a3 on

around the area in Watson Creek that contains the specular
reflection. The values within the polygon were altered to

zero and are displayed in black in figure 41.

T SR A A AW, N

NEENCAS

5.6.4 The Second Stage Reclassification

T o SV 4

by

Three spectral forest classes were identified in the

vl

Chesapeake Bay classification for reclassification. The
classes describe the shaded areas in the forest canopy and
the dark wet grassland; and the spectrally vivid red found
in both the forest canopy and areas in the grassland. The
textural statistics for these classes represented the
forest canopy; and therefore, the pixels classified in the
grassland and marshes were considered misclassified and
candidates for reclassification according to textural
information. The textural values for these misclassified
pixels matched those of the textural statistics for
grassland, and therefore should be reclassified into the

grassland category with little difficulty.
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These same three classes could be reclassified according

to ranges designated in the vegetation index ration Second

Stage. The range delineating the forest canopy could be

employed. If a pixel classified as one of the above three

classes did not have a Second Stage value in the forest
canopy range, then it would be reclassified into a desig-

nated grass category.

To reclassify the specular reflection with a polygon mask
Second Stage, the classes that describe the specular
reflection are designated for reclassification. A
threshold value of zero is chosen for the Second Stage.
The identified categories in the classified image are
reclassified into a designated water class if the pixel’s
Second Stage digital value is less than or equal to the

threshold.

5.6.5 Assessment of the Reclassified Images

The analysis of the reclassified images, figures 33 to 37,
is both quantitative and qualitative in nature. Histo-
grams were analyzed to evaluate the significance of the

changes. Comparison image files were created to visually
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show the pixels that were reclassified in each image. The

comparison images for each reclassification are listed in

table 3.
Table 3

LIST OF COMPARISON IMAGES

Figure Images Compared

42 Figures 32 and 33

43 Figures 32 and 34

44 Figures 32 and 35

45 Figures 32 and 36

The comparison image in figure 42 depicts the pixels re-
classified by texture. Figures 43 and 44 identifies those
pixels reclassified by a vegetation index ratio and
smoothed vegetation ratio, respectively. Figure 45 illu-
strates the reclassified pixels comprising the specular

reflection in the Chesapeake Bay image.

The results of the experimentation, discussed in the above

sections, are detailed in the following chapter.
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Figure 43, 1Image pixels in the Chesapeake Bay region
that were reclassified according to an
unsmoothed vegetation index ratio.
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Figure 45. 1Image pixels in the Chesapeake Bay region
that were reclassified according to a
polygon mask.
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Chapter VI %,
Results
\
)
4 oy
: 6.1 Introduction v
u [)

The Semi-Supervised clustering technique was employed to

identify training set statistics in two images, the )

K
Middleton image (Figure 13) and Chesapeake Bay region ‘2
(Figure 14). The post-classification Second Stage “
reclassification was implemented to increase the classifi- ;
cation accuracy of the Chesapeake Bay image. In the g
following chapter, results involving these two experiments ?6
will be discussed. But first, the effects of the trans- ;

i
formed divergence criterion, in the Semi-Supervised algo- 2

rithm, and the statistical validity of the resulting F
training sets, from the FINDCLASS and Semi-Supervised :
v

clustering, will be detailed.

1

7T v«

6.2 Effects of the Transformed Divergence Calculation u'

s

w £ T VMTE Ty XY X XY«
” -

-

The transformed divergence (TD) criterion was implemented i>
‘h

to prevent homogeneous windows of pixels in the image from ﬁ

being mismerged with the seed clusters. The principle

being, that the initial seeds represent resources of :
-
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interest that the analyst has directed the Semi-Supervised
algorithm to describe. Since it is an analyst- directed

operation, some of the resources in an image may not be

represented by an initial seed. Therefore, if every

S
e

cluster that was considered homogeneous were merged with

one of the seeds according to a statistical distance

metric, mismerging is a likely result. A transformed

JAS 3

divergence criterion would not permit a cluster to be

'~‘x
%
merged unless it met a user defined tranaform divergence
t
threshold value. h
L
. -
-
>~
To evaluate the difference that the transformed divergence K
W :
function has on cluster merging, Semi-Supervised seeds o
were merged with clusters using a transformed divergence "
o
requirement and not implementing the specification. The ﬁf
N
resulting training set statistics were analyzed. Although $T
it is not evident that all the statistical results were '
improved because of the transformed divergence calcula- }
tion, the results were supportive of this theory. 3
)
3
)
In both cases, the training set statistics were printed IS
$
A
)
out before and after clusters from the whole image were 0
merged with the seeds. In some instances, fewer clusters Eﬂ
By
.
w
N
b
L

e N e N A N N o e e e e N e e Y



L)

WU W

NS KT

TR 007N, 1.6%.4% 4 ‘af_¥ tabel A L D A en e sis s o A 3 Yag *al. 1 479 00620 BAAS Rt -

166

were merged to some seeds when the transformed divergence
computation was employed. In comparing the statistics
before and after, the mean values of the initial clusters
were often altered less significantly, and the standard
deviations (an indication of variance) were lower or more
similar to those of the seeds when employing the trans-

formed divergence calculation.

This is demonstrated by two extreme cases; on the average,
the changes were not as significant, or made little dif-
ference in the small subset image on which this experiment
was executed. The examples are from a training set
document of two digital bands of data (Figure 46a and

46b) .

The seed cluster number 7 (Figure 46a) had 18 pixels at
the start; and when merging took place without the TD
function, the number of pixels increased to 90 and the
means in both bands were significantly altered. However,
when the TD calculation was implemented, the number of
pixels resulting reduced to 63 and the means were not
altered as significantly as before. The standard devia-

tions were lower with the TD computation indicating that
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Initial Seed

:Set #: 7
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:Set Name: tree
:N Pixels: 18
‘Means:

61.61111 144.16670
:Standard Deviations:

9.96547 12.48188
tCovarisnce Matrix:

- 99.31046 47.30392
47.30392 155.73410

:Set #: 7

Without Transformed Divergence

With Transformed

Figure 46a,

:Set Name: tree

:N Pixels: 90

tMeans:
46.72222 152.40000

:Standard Deviations:
18.42876 11.31836

:Cuvuriungg Matrix:
339.61860 -47.66292
-47.66292 128.10790

:Set & 7
Divergence
:Set Name:! tree

tN Pixels: 63

tMeans:
51.44444 138.80950

:Standard Deviations:
10.73701 11.27923

:Covariance Matrix:
116.28320 28.71505
28.71605 127.22120

The first example of training set
statistics created without the implement-
ation of the transformed divergence calcu-
lation and with transformed divergence.
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‘N Pixels: 9

tMeans!
60.88889 148.323310

:Standard Deviations:
5.66667 11.61256
tCovariance Matrix:
32.11111 40.5116G67
f ~40.64167 133.00000
:Set & 9
Without Transformed Divergence
! :S5et Neme: tree
‘N Pixels: 12
i tMeans:
. . 63.333314 157.184a90
™ :Standard Deviations:
" 14.40363 11.594R0
*
. :Covariance Mstrix:
. 207.46480 33.51606
» 33.58686 134.17820
»
[ ]
D
[) :Set #: 9
i . o
‘ With Transformed Divergence
: :Set Nameo:! tree
)
:N Pixels: 64
!Means! ’
Gl 64.70370 163.07410,
¥
o :Standard Deviations:
1 9.95393 11.37511
» tCoveriance Matrix:
] 99.08036 12.49406
’ 12.49408 129.39060

Figure 46b., The second example of training set statis-

tics created without the implementation of

, the transformed divergence calculation and
with transformed divergence,
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mismerging was possibly reduced. As a side note, the
first band is textural data and the second is a spectral
band; both are from a digitized aerial photograph with
high resolution, and high standard deviations are expected
in the training set statistics. Similar evidence is

presented by training set number 9 in figure 46b.

In the previous chapter, it is noted that there is a
spectral class representing the forest canopy, in the
Chesapeake image, that is spectrally similar to the marsh
areas. The initial texture statistics represented high
texture values of the forest canopy before the merging
began. After the merging process the textural statistics
gathered without the TD calculation were changed and
represented a smoother texture. This is probably due to
mismerging of the smoother textural statistics represent-
ing the marsh areas. With the TD calculation, the mis-
merging was prevented and the final textural statistics
still represented the forest canopy. These statistics
could then be used to reclassify the spectrally misclassi-

fied pixels of this class in the image.
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6.3 The Statistical Validity of Training Sets

Statistical validity involves the number of pixels sampled
to represent a given population statistically. A training
set is considered statistically significant if it has at
least 10n pixels. The n refers to the number of digital
bands of data. Since 3 bands of data were used, in this
instance, a statistically significant number of pixels

would be 30.

The statistical validity of the training set output from
the Semi-Supervised and FINDCLASS clustering algorithms

was analyzed.

The FINDCLASS algorithm consistently produces numerous
clusters that have only 9 pixels. These classes are
obviously statistically invalid. The Semi-Supervised
approach creates fewer training sets containing a statis-
tically invalid number of pixels. The number of training
sets that resulted in 18 pixels or less were tabulated.
Table 4 lists the results from training sets files for two

images.
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Table 4
NUMBER OF CLASSES WITH 18 PIXELS OR LESS
Image Algorithm S pixels 18 pixels
1 FINDCLASS 6 7
Semi-Supervised 0 3
2 FINDCLASS 6 3
Semi-Supervised 0 3
The FINDCLASS algorithm can be considered 'top heavy’
regarding the number of pixels in the training sets it
identifies first. Figure 47 contains the number of pixels

per training set from the FINDCLASS and Semi-Supervised
clustering approaches. As FINDCLASS processes the image,
each new cluster identified is considered the fiftieth
cluster, and the two most similar clusters are merged.
This continues throughout the whole image, and therefore
it is possible that the final clusters identified in the
image are represented by the training sets that contain §
or 18 pixels. These sets may not have had the opportunity
to merge with spectral data from the entire image, whereas
the earlier clusters have done so. One training set
identified by FINDCLASS to classify figure 23 contained

18% of the image pixels, 45794 pixels.
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‘ FINDCLASS Semi-Supervised 172 '_::
N Cluster # # _Pixels Cluster # # Pixels ~
-~
1 23238 1 1728
2 10332 2 585
3 9495 3 99
1 2331 4 117
5 4590 5 864
6 6723 6 459
7 6165 7 367
8 3681 8 1818
9 3024 9 1008
10 7767 10 657
11 126 11 1359
) 12 3717 12 216
_ 13 2430 13 621
« 14 342 14 540
' 15 666 15 261
16 513 16 © 333
17 216 17 36
18 2016 18 72
19 9 19 711
\ 20 3789 20 1,68
; 21 720 21 531
2 819 22 2070
23 243 23 207
2 729 24 468
25 3 25 279
26 27 26 603
. 27 36 27 117
. 28 4275 28 369
' 19 126 29 783
10 2502 30 387
31 121 31 99
32 36 32 351
. 33 54 33 72
. 24 27 34 441
. 35 333 35 828
] 36 18 36 756
, 37 9 37 243
y R 1 18 38 423
39 a5 39 306
40 36 40 126
q1 9 41 99
42 18 42 63
43 9 43 558
44 9 44 27
45 18 45 126
16 18 46 2259
47 18 47 2115
48 i8 48 1620 ¥
49 9 49 63 :
<
Figure 47. The number of pixels per training set {
from the FINDCLASS and Semi-Supervise.: ‘
clustering approaches.
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The Semi-Supervised technique produces more training sets ;

X with valid distributions, indicating that each cluster 5
§ represents spectral samples from the entire image, as can J
! be seen in columns 3 an 4 of figure 47. The Semi- é
s Supervised approach creates training set seeds in the N
; polygons directed by the user, and each seed grows by ?
h 3
§ collecting similar spectral signatures from throughout the &
image. ?

\J

:

Another disquieting occurrence was noted regarding ﬁ

FINDCLASS. It identified a training set in two of the ;

rotated Middleton images that could not be implemented :

into the maximum likelihood classification algorithm. Two ’

problems emerged, the training sets covariance matrices a

could not be inverted and a negative determinant was cal- ;

culated. The two training sets are presented in figure ;

48. Curiously enough, both training sets have only 9 ;

pixels but the covariances between the 1st and 3rd and 2nd §

and 3rd channel indicates an uncommonly vast distribution E

of spectral data. These statistics were not used in the 3

classification of the image and could not have been by

implemented in any event. :
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o

:Set #: 1

o..;_. .

:N Pixels: 9

q
=0

:Means:
; 51.556 36.222 0.000 )

:Standard Deviations: B
1.740 2.635 4.475

:Covariance Matrix:

¥

3.028 4.486  6287.000 o
4.486 6.944 4414.375 W
6287.000 4414.375 20.028 J

03
:Set #: 49
' :N Pixels: 9 ’ -

:Means: . -~
51.556 36.222 19.889

4
‘0
:Standard Deviations: ﬁ
1.740 2.635 4.475 i
, :Covariance Matrix:

3.028 4.486 5133.444 !
4.486 6.944 3603.903 4
5133.444 3603.903 20.028 N

Figure 48. Anomalous training sets within the
‘ statistical output of the FINDCLASS
) algorithm,
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6.4 Improper Application of the FINDSET Algorithm

In section 5.3, it was mentioned that the FINDSET program
did not completely access the image. Before this error
was discovered, however, FINDSET was employed to cluster
data in rotated images to evaluate clustering bias dis-
cussed in section 2.11. The Middleton image in figure 13
was rotated and analyzed. Since the program only accessed
the first 240 columns of the image, when the image was in
the typical orientation, as in figure 18, no training sets
for water were identified. However, when the image was
rotated to the orientation in figure 21, nine training

sets were found.

The resulting statistics were used in a minimum distance
to mean classification algorithm which classifies all the
pixels in an image. Water would be classified whether or
not there were spectral statistics describing this land
cover. At first, it appeared that the FINDSET algorithm
was biased towards the dominant land cover type of the
image, water, when it was the first class the algorithm
analyzed in the upper left hand corner. This was realized

to not be the case, since the algorithm never accessed the
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water in the image (Figure 13 orientation) and never
acquired statistics for water, but the minimum distance to
mean classifier still classified the water with an organic
soil spectral training set (’z’ in Figure 16). The
FINDCLASS algorithm discussed in section 5.3 accesses the
entire image and is the algorithm comparatively evaluated

within this thesis research.

6.5 Evaluation of Clustering Bias

The Middleton image was selected because of its diverse
land cover types in the entire image accompanied by one
dominant land cover class in the corner of the scene. The
dominant cover type could be positioned in all four
corners of the image, permitting the evaluation of

clustering bias.

FINDCLASS identified 8 or 9 training sets for water in
each of the four rotations depicted in figures 19 through
22. Table 5 summarizes the number of training sets

identified for water in each image.
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Table 5§
NUMBER OF FINDCLASS TRAINING SETS FOR WATER

FINDCLASS - 50 clusters

Figure Number of Training Sets for Water
19 9
20 9
21 8
22 8

The number of training sets that described water were not
significantly different, suggesting that there is no de-
pendence upon the rotation of the image. Therefore, from
this image it cannot be concluded that clustering bias is
a significant problem in the FINDCLASS approach to clus-
tering. Another experiment was devised to retest this

possibility.

Another area within the SPOT satellite scene over the
Cherokee marsh in Madison was selected, 200 columns by 480
rows (Figure 49). In its original orientation, the upper
half of the image is agricultural crops and a river which
leads to the lower half of the scene which is entirely
water. This image underwent clustering analysis at four
different rotations. The number of clusters describing

the water, from 50 clusters requested for each rotation
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are listed in table 6. The orientations in table 6 have
the following meaning: number 1 is the original orienta-
tion seen in figure 49, 2 is the original image rotated
180 degrees, 3 is the original rotated 90 degrees counter-
clockwise, and number 4 is the original rotated 90 degrees

clockwise.

Table 6

NUMBER OF WATER CLASSES - CHEROKEE MARSH

Orientation Number of Water Classes
1 Water Bottom Section 15
2 Water Top Section 11
3 Water Right Half 12
4 Water Left Half 13

Again, a consistent pattern indicating clustering bias is
not present in the Cherokee image. In this case, the
water body dominated over half of the image in each rota-

tion but the results were still inconclusive.

Although the number of classes describing water in the 4
rotations of the Middleton image were nearly identical,

the fact remains that there were an overabundant number of




180

classes (at least B) devoted to segmenting a relatively
simple cover type. Nine training sets are not required to
classify water accurately. 1In the practicum analysis,
only 5 spectral classes were used to segment water in an

image six times the size of the Middleton image.

The Semi-Supervised approach adequately classified water
by directing that 3 to 4 clusters define the water class

(Table 7).

v -y K

Table 7

NUMBER OF SEMI-SUPERVISED CLASSES FOR WATER

Semi—-Supervised - 50 Clusters
Figure Number of Training Sets for Water
25 3
26 4
27 4
28 4

Three Semi-Supervised training sets were requested from a
polygon drawn in the water; the fourth training set for
water was found in a polygon placed over the agricultural
areas. In figures 26, 27 and 28 the round pond near the
center of the scene was inadvertently contained within the

agricultural polygon.

s A TN R LRI 8 N VR SIETE N ST T B

e e

v
AN
LA A PO



The Semi-Supervised approach permits the analyst to
designate the number of training sets that result in
segmenting earth resources, such as water, whereas the

FINDCLASS algorithm does not have this potential.

The disadvantage of FINDCLASS identifying 9 training sets
for water is that there are fewer clusters remaining to
describe cover types that may be more spectrally diverse.
The reduced number of clusters remaining facilitates the
potential for mismerging of spectral information. This
point will be discussed in the following section, which
discusses the overall results of the FINDCLASS and Semi-

Supervised clustering analysis.

6.6 Accuracy Assessment of the Resulting Classifications

In general, the resulting classifications, for the
Middleton area, of the FINDCLASS and Semi-Supervised
algorithms are very similar. Table 8 lists the accuracy
assessment of each image according to the test sites
discussed in section 5.5. As was discussed in section

5.5, the disturbed vegetation, wetland, and many of the
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areas classified as forest, are not quantitatively eval-
uated because they lack absolute classification boundaries
because of their spectral similarities. "Absolute" means
that the boundaries in the thematic map are considered
distinct, accurately classified and known. An appendix is
attached containing the resulting contingency tables

associated with the classification accuracies in table 8.

Table 8
ACCURACY ASSESSMENT OF CLASSIFIED IMAGES

Figure Overall Accuracy 5 Class Average Accuracy
(6 Classes) (5 Classes)

FINDCLASS - 50 Clusters

19 98.9 % 98.3 %
20 99.8 % 99.7 %
21 98.5 % 98.3 %
22 89.8 % 95.2 %
Semi-Supervised -~ 50 Clusters
25 97.2 % 95.8 x
26 98.2 % 97.4 %
27 97.4 %X 96.7 X
28 98.2 % 98.2 %
FINDCLASS ~ 27 Clusters
23 83.0 % 76.4 %
24 77.7 % 57.5 %
Semi-Supervised - 27 Clusters
29 97.2 % 94.3 %
30 77.9 % 68.7 X
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The accuracy assessment in table 8 cannot stand alone in
describing the overall benefits or disadvantages of either

clustering algorithm.

At 49 clusters, the overall accuracy for the Semi-
Supervised approach is independent of the 4 rotations;
whereas, in the FINDCLASS algorithm, the fourth rotation,
figure 22, results in a spectral mismerging of the clus-
ters resulting in a reduced classification accuracy. 1In
figure 22, there is a misclassification of Hay II and the

bare soils. This is not the case in the Semi-Supervised

approach in figure 28.

The classification accuracy for the Semi-Supervised the-
matic map in figure 25 is reduced because some of the
pPixels in the hay I test sites were labelled unclassified,
which is indicated in the contingency table in figure 50.
BExcept for these unclassified pixels, the accuracy assess-
ment for the same orientation clustered with FINDCLASS, in
figure 19, is very similar, as can be seen in the

contingency table in figure 51.
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Unclassified areas in the resulting thematic maps are

significant in that they indicate the resources that the
clustering analysis were unable to describe. In the
FINDCLASS thematic maps, quarries, urban features and edge
pixels are often unclassified. The 3x3 window biases the
algorithm against linear features and other resources that
cannot completely fill the window. In a satellite image,
such as SPOT, the resolution does not afford the roads in
the Middleton area to be wider than 2 pixels. Roads of 3
or 4 pixel widths usually entail mixed pixels which often
do not constitute homogeneous regions. The roads in the
Middleton image predominantly comprised of mixed pixels,
are classified as soils or hay, since training sets for
the roads are unattainable. This was found to be the case
in the supervised classification process until an adequate
road training set was described; in the practicum
analysis, this training set was not identified in the

Middleton area.

The FINDCLASS thematic maps classified quarries as both
unclassified and urban. On the other hand, in the Semi-
Supervised analysis, the quarries were completely unclas-

sified. Semi-Supervised training was not directed to
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cluster training sets for quarries, since quarries were
not in any of the polygons. Also pea fields were not

within the polygon areas for the classification in figure

VT X XK

25; subsequently, peas were accurately unclassified. In
figures 26, 27, and 28, pea fields were in one of the
training areas and were accurately classified. This
indicated that the Semi-Supervised approach prevents the
mismerging of spectral information describing the peas and
quarries with the other clusters. Mismerging is prevented
by the transformed divergence calculation which ensures
that resources not described by the initial seeds remain
unclassified. There are three pea fields in the Middleton

scene.

Identifying fewer than 49 clusters resulted in misclassi-
fication by both clustering algorithms for different

reasons, but the Semi-Supervised algorithm performance is
far more acceptable. In all cases, the misclassification

was less in the Semi-Supervised thematic maps.

ters, for example, in a directed manner, and then imple-

g
The Semi-Supervised approach finds 27 initial seed clus-
ments these clusters to collect spectral information from
b
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throughout the image. The FINDCLASS algorithm identifies
49 clusters in an image, and then merges down to the user-
defined number of clusters requested, 27 for example.
These clusters are merged according to a minimum statistic
distance rule, possibly mismerging clusters that are spec-
trally different. For mismerging to occur in the Semi-
Supervised approach, it will take place during the acqui-
sition of the initial clusters in each polygon. The seeds

are identified with a FINDCLASS operation in each polygon.

Therefore, to ensure that mismerging does not occur, in
the Semi-Supervised approach, the user must designate\a
number of spectral classes to be found that is greater
than the spectral classes expected to result from that
training area. This should prevent the mismerging of
spectrally different clusters in the polygons. A trans-
formed divergence calculation, as discussed in section

6.2, prevents the mismerging of spectral information after

the seeds are created.

In figure 23, only 27 clusters were requested, and
FINDCLASS mismerged clusters, biasing the classification
toward the bare socils and hay I over hay II. Visually

assessing the classification, it is also noted that the

I.
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disturbed vegetation class has been mostly classified as "

wetland. These results are much different for the the- »

- -

matic map in figure 29, that was clustered with a Semi-

o

Supervised algorithm at 27 clusters (see Table 8). 1In ]

>

: figure 29, there is slight mismerging among the bare soil

- - B
-

? and hay II because of the reduced number of clusters ;
; requested in the agricultural training area. Visually, :
: disturbed vegetation and wetland classes still remain with v
3 very little misrepresentation, unlike figure 23. Peas ;
i still remain unclassified in figure 29. Overall, the "
" mismerging is reduced considerably by the Semi-Supervised %

technique, relatively speaking.

b) ,
{ The Middleton image was rotated 180 degrees and 27 clus- 3
E ters were identified by both algorithms. The resulting i
; clagssifications can be seen in figures 24 and 30, ‘

FINDCLASS and Semi-supervised respectively. According to :

the accuracy assessment in table 8, both performed ;
; similarly. However, the FINDCLASS clustering process :
s merged all the clusters representing wetland, disturbed .;
? vegetation, forest areas, and some clusters describing :
B alfalfa and hay I into one training set which is repre- -
g sented as wetland in figure 24. Alfalfa fields not 5
v .
2 \
2

)
W
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designated as test sites for accuracy assessment were
included in this class. Also, hay I is no longer classi-
fied in the northern section of the Pheasant Branch Creek
marsh. All of the forested areas are misclassified by
this class. It must be emphasized that one spectral
training set described all of these areas that were
previously described by several classes. This can be
noted in the contingency table for this image in figure
52. Pixels in the test sites for hay I and forest were
misclassified as wetland. Comparing these results, for
figure 24, to the same image orientation in figure 21 at
49 FINDCLASS clusters, a significant mismerging of
training sets occurred when reducing the output from 50
clusters to 27. Also, as indicated in the accuracy
assessment in figure 52, mismerging occurred among the

bare soil and hay II classes.

The Semi-Supervised output for the same rotation can be
seen in figure 30. Relatively speaking, the mismerging
between bare soil and hay II is slightly reduced but still
occurs. This is due to the mismerging in the agricultural
polygon area with the unsupervised clustering algorithm,

because of the reduced number of clusters requested and a
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different order of acquisition of the polygon area, since
the image is now upside down. This coincides with the
previous conclusion that the results of the FINDCLASS
style of unsupervised clustering is dependent upon the
orientation of the image. An important point not
evidenced by the accuracy assessment, is that the Semi-
Supervised analysis reduced the mismerging of wetland,
forest, disturbed vegetation, alfalfa, and hay I that is
present in the FINDCLASS output in figure 24. Spectral
diversities of these classes were still described by the
Semi-Supervised approach. This is somewhat indicated by
the contingency table, in figure 53, for the hay I and
forest test sites, as compared to the contingency table in

figure 52 discussed above.

In summation, in all cases, the mismerging found in the
FINDCLASS algorithm has been reduced in the Semi-
Supervised technique. There is consistently a larger
number of pixels unclassified in the Semi-Supervised
thematic maps than in the FINDCLASS, an indication that
the Semi-Supervised approach is directed in nature. And
often, the unclassified areas represent land cover types

that were not trained on with the directed clustering
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analysis.

6.7 Assessment of the Semi-Supervised Two Stage

Reclassification

The results of the reclassification of the Chesapeake Bay

classified image (Figure 32) with ancillary data, such as

texture, vegetation index ratio and polygon masks will now
be discussed. The reclassified images can be viewed in

figures 33 through 37.

6.7.1 Texture Reclassification

The discriminant reclassification of selected classes, in
the Chesapeake Bay image, according to textural infor-
mation was very successful, and many of the details
discussed about texture and classifications can be related
to the results in figure 33. But first, it is important
that the reader visualize the outcome of classifying an
image with spectral and textural information indiscrim-
inately (Figure 54). In figure 54, the texture image was
implemented as a fourth band of digital information for

this classification. One training set classified the area
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Figure 54,

Classification of the Chesapeake Bay
according to spectral and textural

information, i
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displayed in black in figure 55. This supervised training
set was taken in the less vivid forest canopy and is spec-
trally similar to the grass. Areas denoted in black are
grassland which possess these spectral characteristics and
high textural values. These high texture areas are the
result of texture values smearing over the boundary of the
forest canopy and are also enhancements of edges on the
landfill and along Watson Creek. In figure 54, the
soil/road class is also misclassified because of the
addition of texture. A road training set placed on a
section of the road that has a bluish tint and a high
textural component, classified the dark wet grass near the
edge of the inlet where texture is high because of the

edge enhancement of the water/grass boundary. Because of

surrounding water are classified into bare soil. Also,
blobs of the water are classified as bare soil because of ;
texture. It would be inviting to rename this training set

to water, but, unfortunately, the roads, the grass around .
Watson creek, and the beach would all be misclassified.
The soil/road category is unaffected by texture when it is

implemented in a discriminant manner. Throughout the

following diascussion, this image will be referred to

g texture, the specular reflection and much more of the
u
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regarding the results.

The Second Stage reclassification according to texture in
figure 33 had very positive results. The actual descrip-
tion of the forest canopy was to be maintained while the
misclassified pixels surrounding the forest in the grass-
land (Figure 32) would be reclassified. This has been
accomplished barring some small details. The pixels that

were reclassified can be viewed in figure 42.

Forest pixels still remain incorrectly classified in the
grassland, where the textural values were similar to the
forest canopy; texture values are high along the edges of
land cover features. Forest pixels still remain along the
upper part of the Watson Creek; but these remaining pixels
are not as unacceptable, as the entire misclassification
of the border along the Watson as in figure 54. In figure
33, Forest pixels remaining on the left side of the image
in the grassland should have been reclassified since there
appears to be the smooth texture present. There are two
reasons for this: (1) the texture in these areas matched
the textural statistics of the forest canopy, or (2) the

texture in these areas matched neither the forest textural
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Spectral-texture classification of the
Chesapeake study area with a selected
training set enhanced in black,
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statistics nor the texture of the grassland, and therefore
were not reclassified. A small stand of trees to the left

of Watson Creek still remained classified correctly. The

CLCoN

& small stand of trees at the mouth of Watson creek above )
the Chesapeake still remained classified as forest, but it X

appears in the texture image that texture representing a

" T e T

-

forest canopy is not present. This stand probably sur- :
vived the reclassification because the texture did not

match either forest or grassland as was mentioned above.

Lo

The detail of the main forest canopy that prevails in the

(I
8. 0.% "
-

discriminant reclassification contrasts the appearance of

blobs describing the boundary of the canopy in the spec- N

tral textural classification in figure 54. 1In the reclas-

L)

0 sified forest, in figure 33, there are open spaces in the
canopy that identify the gaps where shrubs and brush are 3
present in image (Figure 14). These inlets are not

present in figure 54.

The reclassification according to texture changed 6.8 % of t

the image to grassland (Figure 42).
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6.7.2 Vegetation Index Ratio Reclassification

There were two executions of the Second Stage reclassifi-
cation technique to reclassify misclassified forest
pixels, in the Chesapeake Bay region, with a vegetation
index ratio; first with an unsmoothed ratio (Figure 34)

and the second time with a smoothed versiom (Figure 35).

The smoothed vegetation index ratio in figure 40 was more
continuous and complete in describing the shape and area
of the forest canopy than the unsmoothed version in figure
39. After the reclassification with the unsmoothed ratio,
the forest canopy around the two landfills was very scanty
and not completely described. The pixels that were re-
classified can be viewed in figure 43; note: many pixels
in the forest canopy were reclassified into grassland.

The small stand of forest near the mouth of Watson Creek
in the lower section of the image is almost non-descript.
The smoothed vegetation index ratio prevented some of the
main forest canopy around the landfills from being reclas-
sified (Figure 44); but again the values in the ratio
describing the small stand of trees at the mouth of the

Watson were not present. The small stand in the resulting

1050 0 = Y
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reclassification is hardly described.

The smoothed vegetation index ratio reclassified 13.2% of
the image as compared to texture, which reclassified 6.8%
of the image. This is due to a few reasons. The vegeta-
tion index ratio reclassified pixels along the edge of the
roads and the upper portion of Watson Creek that prevailed
when the texture Second Stage was implemented. Also,
texture tends to smear the boundary of the forest, whereas
the ratio is more descriptive of the canopy’s perimeter,

resulting in more reclassified pixels along the edge of

the canopy in the grassland. More of the forested pixels

in the grassland on the left side of the image and the top
section of the image are reclassified correctly according

to the ratio.

Four percentage fewer pixels were reclassified by the
smoothed vegetation index ratio than with the unsmoothed
version, primarily because the unsmoothed version did not
prevent many forest pixels in the main canopy and sur-
rounding the landfills from being reclassified. Figure 43
shows the pixels reclassified by the unsmoothed vegetation

index ratio.
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6.7.3 Polygon Mask Reclassification

The Second Stage reclassification implementing a polygon
mask to reclassify the specular reflection, in the
Chesapeake Bay image, was very successful (Figure 36).

All but a few pixels (not visible on the color reproduc-
tion) representing the specular reflection were reclassi-
fied into the water class. These appear to be two classes
that were not designated for reclassification. Zero point

eight percentage (0.8 %) of the image was reclassified.

In figure 37, a two part reclassification is demonstrated.
A vegetation index ratio reclassifies the misclassified
grassland, and the polygon mask reclassified the specular

reflection.

6.8 Closing Discussion

Secticn 2.12 mentions that the time required to execute a
program is one of the characteristics that should be noted
by the analyst in selecting the appropriate clustering

algorithm or classification.
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The Semi-Supervised clustering algorithm processed 50
clusters in a 512 column by 480 row image in 30 minutes on
an 8 MHZ (megahertz) IBM PC-AT microcomputer and 43
minutes on a 4 MHZ machine. Second Stage statistics were

simultaneously acquired.

The FINDCLASS algorithm completely processed the same
image in 22 minutes on a PDP 1145 minicomputer. Second
Stage statistics could not be acquired with this program.
It should be noted that a minicomputer is much faster than
a portable microprocessor, and the FINDCLASS algorithm is
not an acquisition—-directed approach like the Semi-
Supervised. The Semi-Supervised clustering algorithm is
essentially a supervised approach with an added unsuper-
vised twist. Therefore, it may be more appropriate to
compare the Semi-Supervised technique to the supervised

training process.

Three or four training areas can be identified in an image
in less than five minutes, and the Semi-Supervised clus-
tering analysis can grind out spectral training statistics

from these areas in 30 minutes while the analyst is work-
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ing on another project. It is questionable that an image
' analyst can draw 50 polygons in selected homogeneous 3

areas, to represent the wide range of spectral diversities

in the land cover types of an image, in less than 35 .
i minutes. And these polygons must then be input into two 1
i N
§ ]
t programs that collect the pixel values delineated within 4
4 N
! '0
N the polygons, and compute training sets statistics; this ﬁ
K could take another 5 to 10 minutes for 50 training sets. X
’ )
& And in the end, the training set statistics from both the M
4 %
4 Semi-Supervised clustering algorithm and supervised ap- "
1 proach, are placed in a statistical classification program
; to evaluate how well the image was classified with these X
"D )
‘ statistics. And, still, the retraining process may have %
) to be done all over again. In the end, the results from !
Pa'
a both processes are similar, therefore it should be noted, 3
L
that the Semi-Supervised approach allows a person time to b
‘ do other things. ’
§ 3
r' i,
; ;
> .
. The Second Stage reclassification is extremely fast.
Three forest classes were reclassified, according to ~
A
2 Second Stage textural statistics in a 467 column by 400
row image, in 5 minutes. The reclassification according r:
" to a threshold range, takes less than 5 minutes. And the 3
' L]
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reclassification by a threshold value, takes about two-

and-one-half minutes.

Concluding remarks are discussed in the next chapter

followed by an appendix of the program source codes.
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Chapter VII

Conclusions

7.1 Semi-Supervised Clustering

The Semi-Supervised clustering algorithm performed
successfully, as anticipated. Overall, it performed
better than FINDCLASS in all aspects of the thesis
evaluation. FINDCLASS, however, performed better than
anticipated. There was no evidence of clustering bias in
the FINDCLASS algorithm toward the dominant land cover
class in the image. In the thesis hypothesis it was
stated that the Semi-Supervised clustering algorithm would
reduce some of the biases inherent in the FINDSET algo-
rithm. From these results, also discussed in section 6.5,
it cannot be concluded that the Semi-Supervised process
reduces the clustering bias. It was found that the Semi-
Supervised technique was able to control the number of
clusters that would describe the dominant land cover class
of the image, whereas the FINDCLASS algorithm found an
unpredictable number of clusters for such a category, and
the training sets were often redundant. The spectral
mismerging identified in the FINDCLASS algorithm was
reduced in the Semi-Supervised clustering process; this is

evidenced when fewer than 50 clusters were requested. The
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Semi-Supervised training set statistics were found to be
more statistically valid regarding the number of pixels in
each class, on whole, than those described by FINDCLASS.
This is because the training sets resulting from the Semi-
Supervised clustering involve spectral seeds that were
permitted to merge with spectral data from throughout the
image. The addition of the transformed divergence calcu-
lation prevents mismerging of spectral clusters in the
Semi-Supervised approach, permitting the analyst to direct
the clustering of spectral information of certain land
cover classes of interest. In summation, the Semi-
Supervised approach offers the analyst a priori knowledge
as to the utility of the resulting clusters, because it is
in fact guided by the user. The Semi-Supervised approach
is comparable to the supervised training process but
requires less input from the analyst, allowing the user to

economize his time.

7.2 Second Stage Reclassification

The hypothesis also stated that the application of

ancillary data, as a Second Stage, implemented in a

discriminant manner would improve the classification
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A

accuracy. It has been found that the discriminant iy
reclassification of spectrally classified images with N

)

Y

ancillary data did improve the classification accuracy. ;s

| .'.I'
| This Second Stage post-classification reclassification is ﬁ
i able to recategorize only the classes the analyst desig- %
5
| nates, permitting the ancillary data to be applied to the :':;
)y

b
applicable land cover types. This is a notable benefit vy

since ancillary data often selectively contributes to the 1

classification of digital images.

T o T

™

Misclassified grassland areas were reclassified with

;
S
e
textural statistics and a vegetation index ratio. The N
.
resulting classification with the vegetation index ratio o)
was slightly more descriptive of the actual shape and area '
W
of the forest canopy and reclassified more misclassified
pixels in the grassland than the textural reclassifica- ;,
)
) tion. Reclassifications can be made, based on Second =3
» —d
Stage statistics, such as for texture, and can also be :\:
~
based on threshold ranges in a Second Stage image file. AN
)
| » ]
: ,\:
: The specular reflection in the water of a digitized aerial g
; D
photograph was successfully reclassified as water using a tt
polygon mask. The classes detailing the specular reflec- Y
2
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tion were reclassified if they fell inside the designated
region of the Second Stage polygon mask. This type of
threshold value reclassification is based on a Second

Stage image file that is threshold amenable.

7.3 Summary

The Semi-Supervised Two Stage Classification technique was
found to be a viable method for classifying remotely
sensed digital imagery. A Semi—-Supervised clustering
algorithm analyzes multispectral data to gather spectral
training set statistics from directed regions of the image
under the guidance of the analyst. This clustering algo-
rithm may also simultaneously acquire statistical informa-
tion from a Second Stage of information. Resulting spec-
tral statistics are then implemented into a statistical

classifier to segment the multispectral image.

The Second Stage involves a reclassification of a spec-
trally classified image based on ancillary data. There
are three different styles of reclassification: (1) a
statistical approach, (2) a threshold range approach and

(3) a threshold value approach.
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The Semi—~Supervised Two Stage Classification Technique has
proven to be a viable hybrid classification process for
the clustering, classification and reclassification of

remotely sensed data.

. A
"ol

AR AT




-

e e w e -

-

| e

§

" YOO Ny -\v:.v N 'N‘

MMAA RN MW ANYN AN %\ LN USON \ 250 b 0 7 B Sl Ral tall Vet b 4N C a0 g%y dts 640 8 3 8 'R0 ? v

211

SELECTED BIBLIOGRAPHY

Ahearn. S. C., 1986. Toward an Expert System for the
Analysis of High Resolution Satellite Imagery. Ph.D
thesis. University of Wisconsin-Madison.

Ahearn, S. C. and T. M. Lillesand, 1986. A Proposed
Hotelling T2 Based Unsupervised Procedure as Input to a
Bayesian Classifier. Annual Convention of American
Society of Photogrammetry and Remote Sensing, March, pp.
350 - 359.

Armstrong, A. C., 1977. The Relative Performance of Some
Unsupervised Clustering Techniques for the Per-Field
Classification of Landsat Data. British Interplanetary
Society Journal, vol. 30, no. 5, May, pp. 168 - 171.

Blohm, J., W. Fraczek, H. Hardjakusumah, R. Maki, S.
Maselli, D. Mossman, P. Northcutt, H. Ping and D. Toomey,
1987. A Preliminary Assessment of SPOT-1 Satellite Data.
University of Wisconsin-Madison 105 p.

Chandrasekhar, S., 1983. Unsupervised Classification of
Multispectral Data Using Divisive Algorithm. 1983
Proceedings of the International Conference on Systems,
Man and Cybernetics, vol. 1, pp. 376 - 377.

Colwell, R. N., 1984. Analysis of the Quality of Image
Data Required by the Landsat-4 Thematic Mapper and
Multispectral Scanner. National Aeronautics and Space
Administration, Washington, D.C. December, 151 p.

Duda, R. 0. and P. E. Hart, 1973. Pattern Classification
and Scene Analysis. Wiley, New York, 482 p.

Fruend, J. E., 1971. Mathematical Statistics. Prentice-
Hall, Englewood Cliffs, N.J. 561 p.

Goldberg, M., D. Schlaps, M. Alvo and G. Karam, 1982.
Monitoring and Change Detection with Landsat Imagery.
Proceedings of the 6th International Conference on Pattern
Recognition, vol. 1, pp. 523 - 5286.

Y
WU

- M

'3 TR LR s LI o B - .- - - - < - «
. LS NIATN N e R A \"- YONCRAN " "-.""- -."*" AL -.-. RS TR LRI '\"\"'\. ~ o

-
.

v,

P | -

.

- .
e St AR

o)



RN
d

)

)

- e . e -

[y

Rt

GO T PO UM PO P RO AN U PR KK W R P M O T A XN SO R IR $a¥ $ad B8 .0 20 R? Qa® 2% .0 .0 bt $e® ) +

212

Goldberg, M. and S. Shlien, 1977. A Four-Dimensional
Histogram Approach to the Clustering of Landsat Data. 1th
Machine Processing of Remotely Sensed Data Symposium, June
21 -23, pp. 250 - 257.

Gowda, K. C., 1984. A Feature Reduction and Unsupervised
Classification Algorithm for Multispectral Data. Pattern
Recognition, vol. 17, no. 6, pp. 667 -676.

Haralick, R. M., K. Schanmugam and I. Dinstein, 1973.
Texture Features for Image Classification. IEEE
Transactions on Systems, Man, and Cybernetics, vol smc-3,
no. 6, pp. 610 - 621.

Haralick, R. M. and K. S. Schanmugam, 1974. Combined
Spectral and Spatial Processing of ERTS Imagery Data.
Remote Sensing of Environment 3, pp. 3 - 13.

Hsu, S., 1977. A Texture-Tone Analysis for Automated
Land-Use Mapping with Panchromatic Images. American
Society of Phctogrammetry Proceedings, vol 43, pp. 203 -
215.

Hsu, S., 1978. Texture-Tone Analysis for Automated Land-
Use Mapping. Photogrammetric Engineering and Remote
Sensing, vol. 44, no. 11, pp. 1393 - 1404.

Ince, F., 1981. The Application of the Coalescence
Clustering Algorithm to Remotely Sensed Multispectral
Data. Pattern Recognition, vol. 14, nos. 1 - 6, pp. 121 -
130.

Irons J. R. and G. W. Peterson, 1981. Texture Transforms
of Remotely Sensing Data. Remote Sensing of Environment,
vol. 11, pp. 359 - 370.

Jensen, J. R., 1979. Spectral and Textural Features to
Classify Elusive Land Cover at the Urban Fringe.
Professional Geographer, vol. 31, no. 4, pp. 400 - 409.

Jensen, J. R. and D. L. Toll, 1982. Detecting Residential
Land-Use Development at the Urban Fringe. Photogrammetric
Engineering and Remote Sensing, vol. 48 , pp. 629 - 643.

R VT A S A TR WY >
A N AN AN ‘}'5_‘{5 _n."'\.'ﬁ\.':f\..n._

W . N W Y % ._b.u.h_J\- LA-;A



o W W IR U E WU RN NS TN TR TR N M P R T TR T g T e A W SR AT e Y e MR R Y NN TV WY W NE AV N VLY A

Kanlensky, Z. D., W. C. Moore, G. A. Campbell, D. A.
Wilson and A. J. Scott, 1981. Summary Forest Resource
Data from Landsat Images. Canadian Forestry Service
Environment Canada (Information Report PI-X-5), Chalk
River, Ontario. 24 p.

Leboucher, G., B. E. Lowitz, E. Matra, 1976. What Can a
Histogram Really Tell the Classifier. 3rd International
Joint Conference on Pattern Recognition, November 8 - 11,
Coronado, California, pp. 689 - 695.

Lillesand T. M. and R. W. Kiefer, 1987. Remote Sensing
and Image Interpretation, 2nd Edition. Wiley, New York.
721 p.

Maktav, D., 1985. The Study of the Natural Geographic
Differences in the Coastal Areas of Water Covered Parts of
Marmara Region in Turkey with the Help of Landsat-4 MSS
Data Using an Unsupervised Classification Algorithm with

Euclidean Distance. 11th Annual Machine Processing of
Remotely Sensed Data Symposium, June 25 - 27, pp. 122 -
127.

Moreira, M. A., S. C. Chen and A. M. de Lima, 1986.
Evaluation of Spatial Filtering on the Accuracy of Wheat
Area Estimate. International Symposium on Remote Sensing
of Environment Papers, March, 28 p.

NASA/ERL, 1981. ELAS Earth Resources Laboratory
Applications Software, NSTL Rept. 183, NSTL. ms.

Nelson, C. A., D. E. Meisner and B. Smekofski, 1981.
Techniques to Update a Land Management Information System
with Landsat. 7th Annual Machine Processing of Remotely
Sensed Data Symposium, June 23 - 26, pp. 505 - 517.

Pearson, R. W., 1977. SEARCH - An Efficient, Automatic
Training Sample Selection Algorithm. 4th Annual Machine
Processing of Remotely Sensed Data Symposium, June 21 -
23, pp. 309.

¥
¢
§
>

Pratt, W. K., 1978. Digital Image Processing.
California. 750 p.

A -l'



OO W WA WA M T UOU U OO AW WHOON R D Favaty Jn LNaV Al Pl 08 0.0 60 At 4 0% %0 0% e e beb bl VAt 00 G0 i 990 SRS Al ¢00 b B3 ied o3 Cag s a0s a¥e @Va 2ia 0'a |

214

Richards, J. A., 1986. Remote Sensing Digital Image
Analysis, An Introduction. Springer-Verlag, Germany. 281
P.

Schowengerdt, R. A. 1983. Techniques for Image Processing
and Classification in Remote Sensing. Academic Press,
Orlando, Florida. 249 p.

Shih, E. H. H. and R. A. Schowengerdt, 1983.
Classification of Arid Geomorphic Surfaces Using Landsat
Spectral and Textural Features. Photogrammetric
Engineering and Remote Sensing, vol. 49, pp. 337 - 347.

Story, M. H., J. B. Campbell and G. Best, 1984. An
Evaluation of the Accuracies of Five Algorithms for
Machine Classification of Remotely Sensed Data. The Ninth
William T. Pecora Memorial Remote Sensing Symposium, Sioux
Falls, South Dakota, October 2 - 4, pp. 399 - 405.

Swain, P. H. and S. M. Davis, 1978. Remote Sensing: A
Quantitative Approach. McGraw-Hill, New York. 396 p.

Toomey D. A. and F. L. Scarpace, 1987. A Proposed Semi-
Supervised Two Stage Classification Technique. Annual
Convention of the American Society for Photogrammetry and
Remote Sensing. vol 6, March, pp. 1 - 6.

Tucker, C. J., 1979. Red Photograph Linear Combinations
for Monitoring Vegetation. Remote Sensing of the
Environment. vol. 8, pp. 127 - 150.

Vasseur, C. P. A. and J. G. Postaire, 1980. A Convexity
Testing Method for Cluster Analysis. IEEE Transactions on

Systems, Man, and Cybernetics, vol. smc-10, no. 3, March,
pp. 145 - 1489. j

Wharton, S. W., 1983. A Generalized Histogram Clustering
Scheme for Multidimensional Image Data. Pattern
Recognition, vol. 16, no. 2, pp. 193 ~ 199.

Weismiller, R. A., S. J. Kristof, D. K. Scholz, P. E.
Anuta, and S. M. Momin, 1977. Evaluation of Change
Detection Techniques for Monitoring Coastal Zone
Environments. NASA Earth Resources Survey Program,
Washington, D.C., June, 24 p.

"""""" et e o I R I i e A N AN s ‘J'_‘J\.;-‘ ’iﬁ-{' QA N
]

L R
N N I A N PSS A I VA P T W A :;-:‘.:C'.('.n“.h..:-‘:-.\'.A\J)U}-F}.A'?i




P SO S R N ™ & T R R R R TR N W W W o W o T I I R WV VW W Wy o W Y Ny NI W R L O R Y (e ]

215

Werth, L. F., 1981. An Evaluation of ISOCLS and Classy
Clustering Algorithms for Forest Classification in
Northern Idaho. National Aeronautics and Space
Administration, Washington, D.C., September, 21 p.

Weszka, J. S. and A. Rosenfeld, 1975. A Comparative Study
of Texture Measures for Terrain Classification. IEEE
Proceedings of the Conference on Computer Graphics,
Pattern Recognition and Data Structure, pp. 62 - 64.

Weszka, J. S., C. R. Dyer and A. Rosenfeld, 1976. A
Comparative Study of Texture Measures for Terrain
Classification. IEEE Transactions of Systems, Man, and
Cybernetics, vol. 6, no. 4, pp. 269 - 285.

Wessman, C. A., 1984. The Utility of Color Infrared
Photography and Synthetic Aperture Radar for Vegetation
Type Discrimination in the Tropics. Master of Science
Thesis, University of Wisconsin-Madison, 170 p.

Wickware G. M. and P. J. Bowarth, 1981. Change Detection
in the Peace—-Athabasca Delta Using Digital Landsat Data.
Remote Sensing of Environment, vol. 11, pp 9 - 25.

Wiersma, D. J. and D. Landgrebe, 1976. The Use of Spatial
Characteristics for the Improvement of Multispectral
Classification of Remotely Sensed Data. Proceedings of
the 1976 Symposium on Machine Processing of Remotely
Sensed Data, West Lafayette, Indiana, June 29 - July 1,
pp. 2A-18 - 2A-26.

»

B o SR T Rl G N R A T S SRR St S Rt Y B . Bt R e e A I R T A T R
o L N L N N N N N A AT NN T




‘ - - - - - »
' ~
-
]
{
j
j
3 W,
o,
!t
)
1
J
'
i
o
{}
L)
-
W\
; y
.
t
X ]
g
Byt
t
.P
. Y
X t

APPENDICES ()

[

a3

THE GOV TN

---.
. ¥

LR e g I 8 ) [ e T I I

.
[
- W

AARANRS

| N e e e T Bl

§

A A R A T




I
-

\O . .
— 6EB6 0 S LYHA
QY]
% £'86 *=oOvsTIAY §5YID
* & 86 D ADTYNIDY TTYEIND
cL86° 0 E B6& 00 Tt 28 1890}
0000°1 0-001 00 o0 0 12un
0000°1 0° 001 0°0 00 [ QJn
0000 1 0 00T o0 00 (] Jenb
00001 0° 00T 00 0°'0 [ aen
0000° T 0°001 0" 00T oo o ap
00001 0° 00t 00 oo ° sevad
b 660 C 66 Lo [ 3] OEr 2hwy
9260 [ 3813 s 0 <9 ot 1hwy
00001 0-00T 20 0°0 1E¢ F34)
EL66° 0 & 66 0'0 T°0 80C1T 1308
0000° 1 0’00t 0°00T. 0°'0 [ ren
(F)L9HY :wA0L 5SVTID T INDISSIWWOD 1 :NOISSIWO 1 1§TI3X1IS ¢ (SSVID
6962 18 [} [} ° o T ° IE> E&E 2EC  SOET &2
28 " 8 0 [ ] o T o [4 ° ° ° o { 3sa0s
M ) 4 [ ° ° 0 [ [ ° 0 o o : Youn
b 1o 4 [ o [ [4 ° (] o o 0 (] 1 Qan
° [ ) -] ] ] [ [ [ o (] o [ [ t Jenb
: L o ° [ [ o o ] [ [ (] ° 1 osen
o ro ° ° [ o " o ° ° o 0 ° 0 t AP
o ; ° o ° o 0 o 0 0 o o o ° ; swad
omn 10 ° o ° 0 ° 0 sz 2 0 ° [ t 2hwy
Tee ro o o 0 ° ) o 1 16 1 ° s | Thwy
son i 0 ° o ° ° ° ° o ° e o ° 1 oaTe
o - to 4 [ [ [ [ ] e o ° P06 © ! 1108
1o (4 [ o [] [ [ [ [] [ <] o Y L]
18004 TDuUn Qun Jend 2 em Ap sead zZhwey They 1w ItTOo8 kX dal g8V
Q3nY3IS90 1 Q3INYISB0 1Q31JIY3IN
6l 9IMITJ WOMS SYIYY NOILWOITT®NA HOJ XINIWW NOISNINOD
- - - - - N - i -~
TS, S PP IES ST R T ES ORSRITS S  Wp & ol £, £ AKX,
- - & R, . ey

pEe et o WEREIIER P02,

R A A I e
LI o, i 8

e
™

-




TRV TR VAW AR U RIS W W AT A

F

o

TFE TN TA RN K

PR 0 s ALl A UAS BT RE G0 LN a0 5.0 a0 8.0 00 00 ot B0 a0 o5 0f 8.0 et Ba® gov 3,0 )

(
d
’
(]
$

o ” LRI . - il v p . P L ; oy -
AR 2 L NJ-I 54\ Wy bl Nuﬁ-\ﬂﬁr.n:g(ﬂ N RAXRS AL, PAC ol K o Ik.ln--..--..\v\nw\ al« ~\h(\F-\1\|$ P rryd - ~.-ﬂ
e d
“d
N
<
\ i
<
2
o2
— Iy
- . e
o 44
| 2
£966 0 CLYHN
'S
% L 65 ‘3oeHINY SSYTID Am
. \ﬁm
% 8 65 CADHNIIY TWH3IN0 .KA
A
%
—— — —— &
: 00001 0 001 00 00 £G 28004 '
00001 0o'o0T 00 00 [4 1oun .\V
0000 T 0 00T 3] o0 [ qun
00001 o' oot 00 () 0 Jenb .n.~
00001 0 00T o'0 [ [ e Dm
0000 T 00071 o'0 [ ] [4 ap 5
00001 0001 o0 0°0 [ sead Tey
0000° 1 o-oot . L oo EVE o 2hey
4EBS 0 9 Bs 0'0 rT 8%E They
00001 - 0°001 o0 oo 0LE 1
0000° 1 0001 0°0 o0 €811 1108
0000° Y ~ 0°0o0T1 0°0 0°'0 o [y L}
CF)LOH PTIWA0L SSYTID % INDISSIWWOD ¥ INOISSIWO % 1S73XId * 1SSYTID
&6TES 34 [4 4 o [ [4 0 143 €9€ oLE &B8IT 0
€S ! ES [} ] o 4 ] o o o o o 4] ! asa0 <
(] 1o [ 4 ] ° 0 (] [4 ° o [4 [ 1 Toun >
[ o [4 [4 o o [ o ° o [ o [ { Qun 7
o t o [4 [4 [4 o [} [ (4 [ ° [ [ { Jwnb
] t o (4 4 [ (] [ o 4 ° 4 [¢] [ HER R L
o t o [ [4 ° o (] [4 o o 4 ° [ 1 oAp
o t o [} o (] ] [} ) (] [ [ [¢] [} 1 swad
EbE ‘o o (] [ [ [ (<] ErE ] [+] [ [ 1 2hwy
89€ t o 0 0 [ [ ] [¢] < E°E [ <] [ 1 They
OLE o [4 [ 5} ° [ [ [ ° oLE [ ° 1 oate
(-2 2 1o [ [4 [ [} [ [ [¢] [ [4 cBIl © ¢ 1ros
o t o (] 0 [4 0 ] [ [ 0 o o [ Y L]
1eJ04 1OUN qJ4n Junb 1M Ap sesd 2hey 1hey Fae.d b 1-11 T 11 e
1@3n¥3S30 :GANYISS0 1031341830

(oY4 aanBrg 'WOHZ SYIWY MOILIWAITIYN MOL XIYLIWW NOISNINQGD




oY)
41}

1,

W

LB8LS O T 1UH
* €85 :39vY3nY SSYTID
% ¢ 86 TADDENIDY TH3IN0
00001 0 ooY 00 00 1e 18904
00001 0 o007 00 00 [ Toun
00001 0" 001 0o'0 [ 0 Qun
000071 0° 00T 0°0 [ M) -] Jenb
0000 "1 0- 00T 00 o0 [ 1w
00003 0° oot 0°00T o0 [ .Ap
00001 0-001 0°0 00 (] swed
L1860 s 86 [ €1 oov 2fwy
E2EL O 2'b6 0’0 B'¢ vE They
9066 0 266 0°0 a0 cee i
82464670 966 ¢°0 ro SPOT 1308
0000°1 0°o0t 0°00T 0" 0 (] ien
CT)LOH IviDl S5WTID X INDISSIWWOD % ‘NDISSINO 32 1§IAXIL & (S59D
Ic [ [4 [ 4 € [ B6E 92E 26€ L0102
t 1¢ o [ [} o [} 0 0 [ ] [ [] 1 3sJ04
t o o ° o [] o [ o o [ o [ 1 1oun
t o -0 -] [ [ o [ [ [4 o [] -] 1 Qan
t o [} ] ] o ] (] [} [ ] o (-] 1 Jwnb
HIN [ o [ [] o o [ ° 4 (] o HERA ]
t o o o [ 0 ] (4 0 0 [ (] o 1 AP
t o o [ o [ [ [ [4 o o [ (] { swsd
1o ° o 4 4 o ] PoE [4 [ ® ° 1 2hwy
0 [ [ o [ ° [ 0 $Z€ ] [] o2 1 thwy
t 0 [ [4 [4 4 € o 4 [ 28t [ 0 'S¢
1.0 o 4 [J o [ 1} v [ o tr0T O 1 1TOSs
1o ° [4 (] (] (] o [4 (4 [ o [ 1 3en
18J04 TOuN Qon Jenb 1AW . AP sesd 2hey 1hey 1 I1O08 AWM 31 =l
1@3NY3IS90 103141930

103NNISI0

12 9INBTJ :wond SEIYY NOTIVAITWA Y04 XIMLYH NOISA-NOD

iy »,

ALY

et

a1

34¢

~

*t:




NS PR T

)

.
M
.
]
< N
~—
. o
[
S
3
L]
'
.
.
=
" .
y
-
4
e 2112
|
! Sv
.
] [}
i [
[}
[¢]
s
[+]
’ o
3 (4
2 1444
SEE
c26
o
-
-
-
o
E%
-
-
3
b’
P)
o
-1

L%

> T

b % %

- .T.-\ IV WM

pe~@E ¢ L
[0 IDweIne §59TD
% 8 65 A2VMNIDT IWE3N0
.'~
o T T T T T T T T ey o
ooo0C 1 £ o0t c ¢ o 0 (<4 18203 v
0000 T ¢ oct 6 o o o ° 1oun ..-\
0000 1 o ont [} o0 [ Qun .J
0000 1 0o oct () o0 ] senb ..\
0000 1 o oot oo o0 [4 Twn Sy
0000 T o 001 0 o0t o0 ] ap ..-\
0000 ' T 0 oot o0 [ o swad -
1886 © z 6 6 ve 80 coe 2wy 7
rrée&s 0 ® 66 o0 v o 1er They ...
0000 1 ¢ oot [N ) o0 92€ 4T® e
96C9 0 2 1L v 0 B =2 c26 108 hY
0000 T o oot 00 oo ° amn i
- ' ’
U ) LoHD IPI0L SSWTID X INCISSIMWDOD % NOISSINO % :SIXId & SSYTD .fx
o
o
St [ o [ o T 4] vLS 6t s2e 112 o ..v\
- b
LI 4 o ] [ [ -] o o o] [] [ o ! 1su04 o
1o <] [} o [} -] 4] [ [ ] (<] (4] toToun b5
1o (] 3} [ [ (] [} [+] <] [+] [] ] 1 oaun &,
1o o [} (] [ ] <] 4 [ [ ] 4] ! Jenb
t o [¢] o o ] [+] ° (] o (<] [¢] o H S ]
t o o o o (/] [+] [¢] 0 [+] [} [ [+] [
HI ] [ [ [ [ ] (<] [ ) o] (] [ ! sead
1o (] o (] o [} ] 25¢ o [ € [ 1 ghwy
t o (] [ (] ] T 0 T sbb [+] o 4 1 Thiey
o [ [4 [ [«] o o [ (] e2e [ [ tosTE
t o o o [ o 4] o T [+ (] (A ?? (] { 1tos
t o [] 4 <] ] [ (] (] [ 0 o] (] HEEX )
28903 IOuUnN Qin Jenb 2em AP swad 2hey They T 1t08 kY 1) 11" le]
1@3A83530 133093580 13141830
22 dInSyJ WOYd S¥IHY NOIL¥AITIVN HO4 XIYLWYW NOISNANDD




u.r‘r‘fluu‘n, LACLGCSE  poonnrrd KNSR RSN . BRE

DAV BN B D0 20 R0 5.0 0 Sl Bob Bt Rt

L LV R VRS B Ba' B )

¢2 9INBTI woMs SY3HY NOILYAITYN

(@]
Al
(gV]
90f2L 0 TrEHN
% b PL 139wd3aNY S5VI0
% 0°€R $ADWHNIDY TIYH3N0
00001 0 001 ) 00 ze 28003
00001 0 00T 00 00 0 Toun
00001 0001 00 o0 0 qun
0000 T o 00T o0 00 0 Jmnb
00001 o' 00t 00 o0 [ 1wn
0000 ¢ 0 00T oo o0 o AP
0000° 1 0’00t 00 o0 ] swad
LIE0'O L' E &' & €°96 OEL 2fiey
e1cL o s BL s 91 s 12 BTt They
0000° T [3-1:24 ) oo €8 P38
0000° Y 0°'00% 681 oo eost 1108
0000° T 0°00T o' 00t 0'0 [} 1em
(F)LUHN {TWLI0L SSYID % TNOISSIKWOD % INOISSING % :g13XId & (SSVD
. 6962 28 0 [} [ o o 0 LY B6E TEE LSBT 68
28 i 28 o ] [ [} [} [} [} ] [ o ° i 3sa0}
o 1o o ° o o o o o 0 [ [ 0 t 1oun
o t o [ o [ o 0 [ 0 0 o 0 ° t Qun
° 1o [ ° o o [ [ ° o 0 o [ 1 ownb
o t o 0 0 4 0 o ° [ 0 [\ o [ 1 aem
[ 10 [ [ ) [} o 0 o 0 ) 0 o t AP
0 t 0 0 ° o [ o 0 o [ 0 o [} ; swad
(.= t o o o [ o [} 4} 1 [ > 6VE [\ 1 2hey
aty 10 [ ° [4 [ ] o 1 BTE (] 0 &8 t they
1eg () [ 0 [ o o 0 [\ [ tee O [ T T
goct 1o [} [ 0 [} o [ o 0 5 BOS1T © 1 1Yos
[} t o ] ° ° [ ] o 0 ) 0 [} o t aem
18403 TOUN qQqun JEND  amm AD sead ahey They 1= TTos kX Lol :85¢7D
1g3nY3590 1g3AY3SA0 103147930

804 XIMLIWW NOISNINOD

4

D)
)
LI J
N,

>

' e

XN

Ve
U )




221

i i il =r » T N i e ¥ Ta Po Rl ol g [l

- - e > e X
GETY 0 CLeHD
1 & LS 1 39wM3NY SSYTD
% LLL LADYHNIDY WU 3N0
0000°0 00 00 0 001 1c asu0;
0000 1 0 o001 00 0°'0 [ Toun
0000° 1 0007 oo oo [ qun
0000° T 0001 0’0o 0°'0 [ Jeanb
0000° 1Y 0 00T 0’0 o'o0 o awm
0000°T 0'o07 [ ] 0°'0 [ ap
0000° Y o0°o00°% 0°0 00 [} suad
16L0°0 €6 8 o2 € 06 oor 2hwy
$4TL0 6°8L o0 T2 SYE They
0000° Y 0°001 [ 3] 0°0 cBE 34
ErL6° 0 0’66 6 €2 [ 4 Srot TT08
0000° T 000t 000t 00 -] aen
(F) LR $v10L SSVYTID % SNOISSIWHWOD % SNOISSIWD % ‘SN3XId @ SSYT1D
[} [¢] 0 ° [} ] -] -4 eL2 <B8E LSET  b2T
i o -] ] [] [ [} o ] (] ] [} 1< | 18004
t o [ ¢ [ [ [} [} [} [} o ° ] t TOuUn
t o [ [} (<] -] o [ (] [} [ ) [] 1 Qun
HI ] o [} (] [ o o [ [ ] (4 [} { Jenb
1o ] o o o [} [} ] [} [ (] (] S L
t o -] [} [ ] [ [} -] o - 0 [ (] t ap
t o [} [ (] [] [} [+] [ [] 0 o [] { seed
t o 0 ] (-] (] [ [} 8€E [ [ 2%€ ] 1 2fwy
H [} [} 0 [ ] (] (] EL2 [] <] EL ! They
1o ) -] o [ (] [+] ° (] (5153 [} [ toaTe
L] [ 1] [ (] [ 0 or ] (] SEO1 © t (vos
t o -] [ [ 4 ° (] [ (<] o [ [ Torem
18J04 TDUN QJsn Jenb Twm Iy swed a2hey They T 1108 u.f ‘S55YID
103043890 1 @3n43SE0 10314183n

¥2 8INBTI wong SeIMY NOTIEAI WA HOI XIMLIYE NOISNANGD

SN 2R LA T S N PR K Rt Ry,




"alg® oyt

a N

AR AN BN Toaw -

222

6962

(=3 < - B I -

[+]14-4
(=244
1ES
80¢1t

Ry G ol i I £ o =, S T A AT i I R A S
(4= ) L1
% 8 56 P 39w¥3IAY S5YND
% 2L TADYNNIDY TTWHIND
S186°0 886 0o =R { 28 asJ04
0000 1T 0° 00t 0°00T oo 0 Toun
0000 ¥ 000t 00 00 0 qun
00001 . ooor oo 0°0 0 swnb
0000° T 0° 00T [ M) 0'0 [ awn
0000°T o-oot o'0 0°0 [
0000° T o°'oot oo o'o [} .-
0000° % 0°oot €0 0°0 ogr - a2fiwy
88LL°0 08 [} 9 61 [-3{2 Thwy
0000°T o-"oot oo 0°o0 1eC 2l
0000° 7 0-oot 0°'0 0'o 80€T TY08
0000° 1 000t 0°00T 0°0 [ renm
(FILIVHA IMYLI0L SSYID % NOISSIWWOD % NOISSIWO % :§TaAXIC & 1SSV
0 {:] 99 o [} -} [4 [ 2€EY 9EE 1EC B0ST €T
1 18 [} ] ] [ [} o ° o [ [ T t 1830}
10 [ 4 [ [ 4 [ [ [4 [ [ [ 1 Toun
1 [ o o [ ° ] o [ ] [} 4] t Qun
t o [ [ [4 [ o [ [ ] ] [4 [ 1 Junb
10 o ] [ o [} o [ (] [ [4 [ 1 aen
10 o o o (] [ [} 0 o ° [4 [ 1 AP
{0 [ [ (] ] [ (] 0 (] ° (4] ] 1 suwad
(] 0 o o [ [ 0 OEt [ ] o [ 1 efey
t o 99 [ 0 -] [ ] 2 9EE [} [} vt 1 1hey
1o [ [} [4 [ [ [ [} [ €S [ [} 1 #T
[ 0 o [ o [ [4 [} [ o gost o0 i tros
t o ] [ [ [} [ [} [ o o [} [ 1 2en
18903 TDuUn qJun Jenb LS 1] Ap swad 26wy they iIT® 1108 18M i -3-1 Jate]
:@3aNY3ISHA0 1Q3NYISA0 1Q3T4IY3N
G2 3INTTJ :won4 SYINY NOILWAITIWA HOJ XIWIWYH NOISNINGD
L) * - X o e P - K_", ~x- % et

»

4,
y




A S “-... u..ﬂ. "s P nxns# ﬂn\ Uﬂﬂ.ﬂ W W

e

L

o

223

-

6216 0 J R

h
v b LG TADIYH3AY 5SSV h
% 2 66 ADWENIDY T1IEN3A0 r
o
S a e )
L0860 186 ] &% €S asJo; MM
0000 T 0 00T 0 oot [ ° Toun hY
0000 T 0001 o0 o0 [ qun Jm
00001 0°00T 00 oo [} Junb ’
00001 o oot 00 oo o 1em NM
0000° T 0 00T 0 oo°T 00 [} ap 5
0000 T 0 00T 0001 o0 4 swad o,
00001 0° 00T 00 0°'0 EPE atey :
vELB O 1 68 00 6 01 8v€ Thwy ~
89660 L 66 00 E0 oLE a4 o=
0000° 1 0'o0T 0o°0 00 (-2 84 1108 y
0000 Y 0° 00T 0'0 00 [ 18m
CT)LUH IIWLOL SSYID % INOISSIWWGD % NOISSIWO % :$T3IXId & SSVID %4
&6TIES =44 2 [ [ [¢] 2 =13 €bE B82€ &9E coIT 0
EG 1 2¢ ] [+ o o] T [} ] [+] 0 (] 0 1 1890}
(] [} [ [ [4 (4 [4 [} [4 [ 0 ] [ t Youn
] 1o (] [ [ [¢] [ 4 o o ° [ [ t Qun
[ t o 0 [ [ [4 [ ] [ [ [} [ ] ! wenb
[} 1o -] [ [ o <] (] 0 [ 4 [ o t iwm
[ t o (] [ ] [ [+] [} (<] [ [ [ o 1 AP
[} 1 o (] [+] (] [ [ (<] ° ] [} [ [} { swad
EvE t 0 0 4 0 0 [4 [ €EbE [4 [4 4 [} 1 2hwy
e9€ t o 2 0 o [} (<] =1} ° B8zE [ (] ] 1 1hey
0LE t 0 -] [ [ 0 T o [4 [} 49E [ [} to#Te
[3:284 ) [4 0 1} ] [ [} [} [ 0 ¢8IT © t 1vos
] HI o o] o ] -0 o] (] 0 [} 0 (] (] 1 rem
18404 TOUN qQJn Jenb 2 Em AP sead 2fhey They Fa sl ITos kS Ll B3] A o)
P
1 a3nY3530 1 @3nY3SA0 $Q314183n v

9z 9INPT wWOMd SE¥IYY NOTIVATIVA HOd XTHLIWHW MNOTSNANOD




‘8.0 0 004

~ .,. | ( \.
B £ 7.0 " 0 bn\vﬂ a2 XS

224

N
I\
[\
[t']

0

o
T

e
8€
Srol

NY000O0Q0QO00w

- -

B R NN NS v b AL iSRS NS (N

6196 O LHA
% L %6 .39uH3nY S5V1D
T b L& CADYHMNDIDY NYH3A0
0000 T o oo7v o0 00 15 15003
00001 o ooT 0 oot 00 [ oun
0000 1 0 ool o0 00 4] qun
0000 ¥ 0 o071 0o [ ] [ Jenb
0000° T 0 00% 00 0°0 o rem
0000° Y 0 00T 0 oot 0'0 o np
00001 0 00T 0°'o00T 00 [ swad
0000° 1 0 00T Ebr 00 oob 2fiwy
9E28°0 L' b8 o'o €°Ct [2°4] T hwy
9066 0 2 66 [B] e o [5:15) 1
9b&s6" 0 L 66 o°o €0 SOt 1108
0000° 1 0°00T 0'o00% o0 [ 18
(7)) LoHN IMYI0L SSYTID % NOISSIWWOD % INOISSIWO % (EN3XId & SS5YID
¢ € [ [¢] (] =] EE R {4 E62 28t 2r0o1 €
bis o (] o o [ 4 [ [} [ (4] [ t 3840}
t o o [ [+] [¢] [} o (] [ [] [ [ 1t (oun
I o o [ [¢] o ] [+] o [¢] (] ) o i Qun
t o [ [ [+ [+] (] [ [ [+] o [4 [ { Jwnb
t o [ [« [ o [ [ ° 4 o 0 [} 1w
t o o] (] [] [¢] (4] 1] (] 0 o ] o 1 AP
' o [+] [ [+] [ [ [ [] o [+] [ [ | swad
t o [ [¢] (4] 4] [¢] [ (1414 o (<] [ [ 1 2fey
H) 2 [} [ [ [¢] EE [ (] [+] [+] € 1 Thwy
t o T o [ [ 2 (] [+] 4] 28E o [ 1 4T
o 0 [+] 0 o) (] [} € [ [ 2ror O t 1tos
o [ [¢] [¢] [+] ) [ <] 4 [ (4] [ 1 e
128903 TouUn qJ4n Jenb TEm Ap swad 2fwy They 3T® g 1.1} Imr H-1-1Jate)
1 QANY3530 1 Q3INYISA0 Q3141830

L2 9ImBT4 WON4 SUIMY NOIL®AT YN H0J XIFLYW NOISNINGD

Wt tn—— £ S st A A e el P - D MM by - S a S 8 S A s m e ML e e . —— . . —— —

" %

"t W W W
AT AT

N

o o
iy

St

1

oS

La
»

LA

L

RN



IO LN OO

mn
N
N
f . .
Tofe O CALeH
% 2 86 IADYHIANY SSUTID
% g 86 TAJWMNOOY wH3N0
0000 1 0 00T 00 0°0 (=" 1503
0000 1 0 oo0T 0 oot 00 o TouUn
0000 1 0 001 oo [ 3} [ qun
0000 ¥ 000t [ o0 [ Jenb
00001 o oot 00 [ [4 1en
0000° T 0 00T 0 00T o°o0 <] AP
0000° 1 0 00T 0°001 0°0 [ . sead
00001 0 o0t €0 [ ] coE 2fmy
L0060 026 0°0 o's h{~14 They
16860 T 66 0°0 &' 0 f2e +T®
0000° T 0 0071 [ ] 0°'0 c26 1ro08%
0000° T 0° 00T 00 00 [¢] 1en *
CY)LOHN ITYAOL SSYD % CNOISSIWWOD % CNOISSIWG % IST3XId & S5V0
=2 841 (4 [ ] [ [ e &2 L5€ [} {4 eze (=73 o
{4 1 Sb (] (] o (] [¢] (] [+] [+] <] [ [+] LR 1
o 10 .0 ] ] 3} 0 o -0 o ] [} [¢] ! IouUn
1] 1o [ ] o [ 4] <} 2} o ] [+] [ 1 gqun
] 10 [} (] [ (] ] 0 o <] 5} (<] [ : Jwnb
0 1 0 [+] (] o [¢] (] o (] [ [ [+] [¢] ! oaen
o t o ] [ (] [ o (] [ [ (] [¢] [ toAp
[ t o [¢] ° [} o [ (] (<] ] (4] o [+] : sead
(4] t o [¢] o [} (] [ ] (145 [o] o] 0 (4] t 2fwy
1414 H < (] (<] [¢] (] 62 2 L STb o [ 0 t they
vae H ] o o 1} (] € (] 1} [ €2€ o [ S 4
cz6 1o [ [ 0 [+] ° 1} o o o s26 o] ! oTYes
s} t o (] [4 [} [ (] o 3} o] (<] o [¢] 1 asn
18404 TOUuUN QJan Jenb 1rem AP sevad N?NC H"C rFhed TTOS 1OMm 1SS59D
1@3A43S30 1 gaANYISHI0 1g313193N

82 8INJTJ WOYd S¥IYY NOILWAITIYA 803 XIMLIWW HOISNANOD

B R R Ad Bt

~
R

-"".{'"J‘

\{“’I

- 1)\'.



2
&
2
a
P,
&
\O
n) N
[aV} .
.
-
ECT6 O LD
1 E bé I FOUHINY 55Y1D
@ % T Ls TADYHNDOY TIYHIN0
b ries 0 0 68 L2 01T 28 2830y
P 0000 T 0 007 0 o0r1 oo [ Toup
¥ 0000 T 0001 00 00 [ qun
- 00001 0 001 0°'0 00 [*] Jenb
b 00001 o'o00t1 [} 0°0 o Iem
\ 00001 0° 00T 0 oot 00 (] Ap
" 0000° 1 0°00T 000t 0°0 0 sead
> 8r96° 0 0 L6 0T [ OEV 2fiey
b 12680 198 [} & ET 81p They .
bS66° 0 9 66 [N} b O 1€ (24
98660 & 66 60 10 80ST Tros
0000 T 0 001 0°'00t 0°0 ] 1o
} -
3 (T)LeH TYLOL SSYID % CNOISSIWWOD % NDISSIWO % 1573X1d & 1SSV
+
, 6962 <L 8z 1} o o & oz T2y 0%€ 628 o281 L
f S
* 20 1 EL o ] 3} o & o 3} [+] [ [+] [+] t 1sJ0y
» o 1o o [4 [ ] [+] o ¢} [ 4} ] o R EUL
.‘ o t o o [} o o o [+ o [ o (] o 1 Qan
» ] t o o] 0 ° [¢] 4] [+ [ ¢} 0 o 0 : Jenp
y 0o t o (o} [} [} o] [} ] o] ] (4] [+] [+] Polen
[ 10 3} o ] 4 o] o ] [+ [ o o 1 oAp
o [ [4) o) [+] [¢] [} [¢] [¢] [+] 0 [} (] : swad
. OEt ) 0 [¢] [ [ [ [+] L1lb o [ €1 [¢] t 2hey
81t 10 =) [) 0 ) (] oa € 09€ o [+] L T They
n 1eS - [¢] o ] 4 [ o] o] o) 6TS (] (] st
[ ao¢T t o [3} [4 o 4} o o T <] 4] L0681 © 110
T ° Lo o] o 0 0 0 o o 0 o [4 o 18
m 1900 Q. Jrnb Twem AR ® et ohwy They 'Bad 110 AR 2ol S5w D
.
T QAINN3ISIN AANYASHY [aIRDEE D B I Tal
67 Ukjw—m [REREN] IR IRTUNNY TIEE B IEE I - TR T B re I

s WLV,

[




‘l& y b '...t » n‘ »a rr - o - - ukb. .I«l\lvr\ .h“’. . L - ‘.\\-\\\v .« 1 LR I = -la =T &

> -\
w . ,“..
b
~ . 'y
(qV] CcoR9 O Fa~d s b J-.
3 [qV] o g
1 L B9 ADTHINY SSYTID “d
.
- O
¥ % & 2L {A09Y¥NI3Y TYNIND .
',
-d
» Pl
k - 5
% 21990 499 oo [ >3 1% 18004 f\.
o) 0000° 1 0001 o oot [ [} ToUN r\
b 0000 ¥ 0°00T 00 oo [4 qun A
. 00006° T o o0t 00 00 o swnb L
; 0000 T 0°00T o'o 0o [ 1mm e
0000°T 0 001 0°00¢ 00 o ap "
0000° T 0°00T 0°00T 0'0 0 ‘swed Y,
€S20°0 s ot 8 ob ¢ 6B oob © ghwy Y
1E29 0 2°99 o'o0 € EE 9vE They e
0000° T 0°00T 8'€ 00 SBE 1w "
. 0000° T 0°00T [~ 0°0 svot 1708 o
0000° T 0°00T o0° oot 00 [ 18 |, g
P4
(3 FPL 2] TWADL SSYWID % INOISSIWWOD % INOISSIWO % {SI3XId & SSYTID r.v
. -I--
.'
4222 vE 2 [ [4 [} 4 €E T &22 oov €eorT IS
- e ! bE o [ [ (4 (] [} ° [4 (5 [ e ! 3su0y
. o 10 ° [3 [ o [ [ ] [ ° 0 4 1 TPun
-0 t o [J [ [ o 4 ] [ [ [ [4 o t qun
[+] 1o [} [4 o o (] [ 0 (] (] (<] ] t venb
o t o (] [3 [} [ [ [ [4 [ [ [ [ 1 3em
[ t o (] 0 [4 [ [ [ [4 [ [4 [ [ 1 oApP
Z (4] t o [4 [ o ° [} [ o [ o [4 o | swed
oob 1 o 0 0 [4 ° (] av 4 [4 B8cE [4 t ghey
SpE o 2 4 [4 [ 4 €ee 62 622 o o 6t i They
SBE () [ 0 0 4 [ [} [4 0 e8c 0 o toaTe
“ Srot o [4 0 [ [} [ ] 0 4 (] cr01 0 ¢ 1Y08
ﬂ o to o (4 o ., .0 [ [} [ [ o [4 [ ERY &
. -
.h 18403 1Oun aun Jenb 1em AP sead 2hey They I1e b i-113 LY 1] -3-1"nte]
! 1@3nYISI0 1 03N4ISA0 1a314193N0
m 0f 8INFTJ :WOHI SUIYY NOILVOT N HO4 XIVLIYW NOTISNINOD
W
-rss - . F LA WAl e | TELILY YISXET LIS PR LIEEA b S g B L L MY, =2 2w T o fy




Yo 0Te 8% A% 0% 4 %9 075 0" 075 0%y 0° %0 00,0 0.0 080,80 1,0 d ‘Bt Haf a® 82t 4,0 I.' | . Q' ‘l'l'i.’ @ ¥ 0, ¥ 4.0 03¢ 0t 1" * ot S _Ba® de?,

8
e
i
.
3
: LS
: b
! \
:
228 v,
! 9
e
! W
Y "
v . ")
The source code for the Semi-Supervised Two Stage e
! Classification Technique may be found in the thesis copy t
! in Memorial Library.
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